
liquid
software-defined radio digital signal processing library

User’s Manual for Version 1.2.0

Joseph D. Gaeddert
April 27, 2012
Blacksburg, Virginia
liquid@vt.edu

This entire project was proudly coded using Vim and gcc

Contents

I Introduction to liquid 1

1 Background and History 2

2 Quick Start Guide 2
2.1 Building from a Tarball . 2
2.2 Cloning the Git Repository . 3
2.3 Additional make Targets . 3

3 Data Structures in liquid 3
3.1 Basic Life Cycle . 4
3.2 Why C? . 5
3.3 Data Types . 6
3.4 Building/Linking with C++ . 7
3.5 Learning by example . 8

II Tutorials 9

4 Tutorial: Phase-Locked Loop 10
4.1 Problem Statement . 10
4.2 Setting up the Environment . 11
4.3 Designing the Loop Filter . 13
4.4 Final Program . 15

5 Tutorial: Forward Error Correction 17
5.1 Problem Statement . 17
5.2 Setting up the Environment . 17
5.3 Creating the Encoder/Decoder . 19
5.4 Final Program . 20

6 Tutorial: Framing 23
6.1 Problem Statement . 23
6.2 Setting up the Environment . 24
6.3 Creating the Frame Generator . 24
6.4 Creating the Frame Synchronizer . 27
6.5 Putting it All Together . 28
6.6 Final Program . 31

7 Tutorial: OFDM Framing 35
7.1 Problem Statement . 35
7.2 Setting up the Environment . 35
7.3 OFDM Framing Structure . 36
7.4 Creating the Frame Generator . 37

ii

7.5 Creating the Frame Synchronizer . 40

7.6 Putting it All Together . 41

7.7 Final Program . 43

III Modules 48

8 agc (automatic gain control) 49

8.1 Theory . 49

8.2 Locking . 50

8.3 Squelch . 50

8.3.1 Methodology . 51

8.3.2 auto-squelch . 52

8.4 Interface . 52

9 audio 55

9.1 cvsd (continuously variable slope delta) . 55

9.1.1 Theory . 55

9.1.2 Pre-/Post-Filtering . 56

9.1.3 Interface . 56

9.1.4 Example . 57

10 buffer 59

10.1 window buffer . 59

10.2 wdelay delay buffer . 61

11 dotprod (vector dot product) 62

11.1 Specific machine architectures . 62

11.2 Interface . 62

12 equalization 64

12.1 System Description . 64

12.2 eqlms (least mean-squares equalizer) . 64

12.3 eqrls (recursive least-squares equalizer) . 64

12.4 Interface . 65

12.5 Blind Equalization . 66

12.6 Comparison of eqlms and eqrls Object Families . 69

13 fec (forward error correction) 71

13.1 Cyclic Redundancy Check (Error Detection) . 71

13.2 h74, h84, h128 (Hamming codes) . 71

13.3 rep3, rep5 (simple repeat codes) . 72

13.4 g2412, Golay(24,12) block code . 73

13.5 SEC-DED block codes . 73

13.5.1 secded2216, SEC-DED(22,16) block code . 73

13.5.2 secded3932, SEC-DED(39,32) block code . 74

iii

13.5.3 secded7264, SEC-DEC(72,64) block code . 74

13.6 libfec (convolutional and Reed-Solomon codes) . 74

13.7 Interface . 74

13.7.1 Soft Decoding . 76

13.8 Performance . 76

14 fft (fast Fourier transform) 80

14.1 Complex Transforms . 80

14.2 Real even/odd DFTs . 82

14.2.1 FFT REDFT00 (DCT-I) . 82

14.2.2 FFT REDFT10 (DCT-II) . 82

14.2.3 FFT REDFT01 (DCT-III) . 82

14.2.4 FFT REDFT11 (DCT-IV) . 82

14.2.5 FFT RODFT00 (DST-I) . 82

14.2.6 FFT RODFT10 (DST-II) . 82

14.2.7 FFT RODFT01 (DST-III) . 83

14.2.8 FFT RODFT11 (DST-IV) . 83

14.3 spgram (spectral periodogram) . 83

15 filter 87

15.1 autocorr (auto-correlator) . 87

15.2 decim (decimator) . 88

15.3 firfarrow (finite impulse response Farrow filter) . 89

15.4 firfilt (finite impulse response filter) . 91

15.5 firdes (finite impulse response filter design) . 93

15.5.1 Window prototype . 93

15.5.2 liquid firdes nyquist() (Nyquist filter design) 95

15.5.3 liquid firdes rnyquist() (square-root Nyquist filter design) 95

15.5.4 GMSK Filter Design . 99

15.5.5 firdespm (Parks-McClellan algorithm) . 99

15.5.6 Miscellaneous functions . 101

15.6 firhilbf (finite impulse response Hilbert transform) 103

15.7 iirfilt (infinite impulse response filter) . 106

15.8 iirdes (infinite impulse response filter design) . 108

15.8.1 liquid iirdes(), the simplified method . 108

15.8.2 internal description . 110

15.8.3 Available Filter Types . 111

15.8.4 bilinear zpkf (Bilinear z-transform) . 112

15.8.5 Filter transformations . 113

15.8.6 Filter Coefficient Computation . 113

15.9 interp (interpolator) . 116

15.10msresamp (multi-stage arbitrary resampler) . 117

15.11resamp2 (half-band filter/resampler) . 119

15.12resamp (arbitrary resampler) . 121

15.13symsync (symbol synchronizer) . 124

iv

16 framing 129

16.1 interleaver . 129

16.1.1 Interface . 130

16.2 packetizer (multi-level error-correction) . 131

16.3 bpacket (binary packet generator/synchronizer) . 134

16.3.1 bpacketgen interface . 134

16.3.2 bpacketsync interface . 135

16.3.3 Code example . 136

16.4 frame64, flexframe (basic framing structures) . 137

16.4.1 frame64 description . 137

16.4.2 flexframe description . 137

16.4.3 Framing Structures . 137

16.4.4 The Decoding Process . 138

16.5 framesyncprops s (frame synchronizer properties) 139

16.6 framesyncstats s (frame synchronizer statistics) . 140

16.7 ofdmflexframe (OFDM framing structures) . 141

16.7.1 Operational description . 141

16.7.2 Subcarrier Allocation . 142

16.7.3 Pilot Subcarriers . 143

16.7.4 ofdmflexframegen . 143

16.7.5 ofdmflexframesync . 145

16.7.6 Performance . 147

17 math 149

17.1 Transcendental Functions . 149

17.1.1 liquid gammaf(z), liquid lngammaf(z) . 149

17.1.2 liquid lowergammaf(z,a), liquid lnlowergammaf(z,a) (lower incomplete
Gamma) . 150

17.1.3 liquid uppergammaf(z,a), liquid lnuppergammaf(z,a) (upper incomplete
Gamma) . 150

17.1.4 liquid factorialf(n) . 150

17.1.5 liquid nchoosek() . 150

17.1.6 liquid nextpow2() . 151

17.1.7 liquid sinc(z) . 151

17.1.8 liquid lnbesselif(), liquid besselif(), liquid besseli0f() 151

17.1.9 liquid lnbesseljf(), liquid besselj0f() 152

17.1.10liquid Qf(), liquid MarcumQf(), liquid MarcumQ1f() 152

17.2 Complex Trigonometry . 152

17.2.1 liquid csqrtf() . 152

17.2.2 liquid cexpf() . 153

17.2.3 liquid clogf() . 153

17.2.4 liquid cacosf() . 153

17.2.5 liquid casinf() . 153

17.2.6 liquid catanf() . 153

17.3 Windowing functions . 154

v

17.3.1 hamming(), (Hamming window) . 154

17.3.2 hann(), (Hann window) . 154

17.3.3 blackmanharris(), (Blackman-harris window) 155

17.3.4 kaiser(), (Kaiser-Bessel window) . 156

17.3.5 liquid kbd window(), (Kaiser-Bessel derived window) 156

17.4 Polynomials . 157

17.4.1 polyf val() . 157

17.4.2 polyf fit() . 158

17.4.3 polyf fit lagrange() . 158

17.4.4 polyf interp lagrange() . 158

17.4.5 polyf fit lagrange barycentric() . 159

17.4.6 polyf val lagrange barycentric() . 160

17.4.7 polyf expandbinomial() . 160

17.4.8 polyf expandbinomial pm() . 160

17.4.9 polyf expandroots() . 161

17.4.10polyf expandroots2() . 161

17.4.11polyf findroots() . 161

17.4.12polyf mul() . 162

17.5 Modular Arithmetic . 162

17.5.1 liquid is prime(n) . 162

17.5.2 liquid factor(n,*factors,*num factors) 162

17.5.3 liquid unique factor(n,*factors,*num factors) 162

17.5.4 liquid modpow(base,exp,n) . 162

17.5.5 liquid primitive root(n) . 162

17.5.6 liquid primitive root prime(n) . 163

17.5.7 liquid totient(n) . 163

18 matrix 164

18.1 Basic math operations . 164

18.1.1 matrix access (access element) . 164

18.1.2 matrixf add, matrixf sub, matrixf pmul, and matrixf pdiv (scalar math
operations) . 165

18.1.3 matrixf trans(), matrixf hermitian() (transpose matrix) 165

18.1.4 matrixf eye() (identity matrix) . 166

18.2 Elementary math operations . 166

18.2.1 matrixf swaprows() (swap rows) . 166

18.2.2 matrixf pivot() (pivoting) . 166

18.2.3 matrixf mul() (multiplication) . 167

18.2.4 Transpose multiplication . 167

18.3 Complex math operations . 167

18.3.1 matrixf inv (inverse) . 168

18.3.2 matrixf div() . 168

18.3.3 matrixf linsolve() (solve linear system of equations) 168

18.3.4 matrixf cgsolve() (solve linear system of equations) 168

18.3.5 matrixf det() (determinant) . 169

vi

18.3.6 matrixf ludecomp crout() (LU Decomposition, Crout’s Method) 169

18.3.7 matrixf ludecomp doolittle() (LU Decomposition, Doolittle’s Method) . . 170

18.3.8 matrixf qrdecomp gramschmidt() (QR Decomposition, Gram-Schmidt al-
gorithm) . 170

18.3.9 matrixf chol() (Cholesky Decomposition) 171

18.3.10matrixf gjelim() (Gauss-Jordan Elimination) 171

19 modem 173

19.1 Analog modulation schemes . 173

19.1.1 freqmodem (analog FM) . 173

19.1.2 ampmodem (analog AM) . 175

19.2 Linear digital modulation schemes . 177

19.2.1 Interface . 179

19.2.2 Gray coding . 180

19.2.3 LIQUID MODEM PSK (phase-shift keying) . 181

19.2.4 LIQUID MODEM DPSK (differential phase-shift keying) 183

19.2.5 LIQUID MODEM APSK (amplitude/phase-shift keying 183

19.2.6 LIQUID MODEM ASK (amplitude-shift keying) 183

19.2.7 LIQUID MODEM QAM (quadrature amplitude modulation) 186

19.2.8 LIQUID MODEM ARB (arbitrary modem) . 186

19.2.9 Performance . 188

19.2.10 Soft Demodulation . 188

19.2.11 Error Vector Magnitude . 197

19.3 Continuous phase digital modulation schemes . 197

19.3.1 gmskmod, gmskdem (Gauss minimum-shift keying) 197

20 nco (numerically-controlled oscillator) 199

20.1 nco object . 199

20.1.1 Description of operation . 199

20.1.2 Interface . 200

20.2 PLL (phase-locked loop) . 201

20.2.1 Active lag design . 201

20.2.2 Active PI design . 202

20.2.3 PLL Interface . 203

21 optim (optimization) 206

21.1 gradsearch (gradient search) . 206

21.1.1 Theory . 206

21.1.2 Momentum constant . 206

21.1.3 Step size adjustment . 207

21.1.4 Interface . 207

21.2 gasearch genetic algorithm search . 208

21.2.1 chromosome, solution representation . 210

21.2.2 Interface . 211

21.2.3 Example Code . 211

vii

22 random 213

22.1 Uniform . 213

22.2 Normal (Gaussian) . 213

22.3 Exponential . 214

22.4 Weibull . 214

22.5 Gamma . 215

22.6 Nakagami-m . 215

22.7 Rice-K . 216

22.8 Data scrambler . 217

22.8.1 interface . 217

23 sequence 218

23.1 bsequence, generic binary sequence . 218

23.2 msequence, m-sequence (linear feedback shift register) 219

23.3 complementary codes . 221

24 utility 222

24.1 liquid pack bytes(), liquid unpack bytes(), and liquid repack bytes() 222

24.2 liquid pack array(), liquid unpack array() . 222

24.3 liquid lbshift(), liquid rbshift() . 223

24.4 liquid lbcircshift(), liquid rbcircshift() . 224

24.5 liquid lshift(), liquid rshift() . 225

24.6 liquid lcircshift(), liquid rcircshift() . 225

24.7 miscellany . 225

25 experimental 227

25.1 fbasc (filterbank audio synthesizer codec) . 227

25.1.1 Interface . 228

25.1.2 Useful properties . 228

25.2 gport . 228

25.2.1 Direct Memory Access . 228

25.2.2 Indirect/Copied Memory Access . 229

25.2.3 Key differences between memory access modes 230

25.2.4 Interface . 230

25.2.5 Problem areas . 232

25.3 dds (direct digital synthesizer) . 232

25.4 qmfb (quadrature mirror filter bank) . 232

25.5 qnsearch . 232

IV Installation 234

26 Installation Guide 235

26.1 Building & Dependencies . 235

26.2 Building from an archive . 235

26.3 Building from the Git repository . 236

viii

27 Targets 236

27.1 Examples (make examples) . 236

27.2 Autotests (make check) . 237

27.2.1 Macros . 237

27.2.2 Running the autotests . 238

27.3 Benchmarks (make bench) . 238

27.4 Documentation (make doc) . 239

ix

1

Part I

Introduction to liquid

The next few sections are designed to give you an understanding of liquid’s intended purpose and
where it might fit within your project. Included is a quick start guide, example source code, and a
brief historical outline.

2 2 QUICK START GUIDE

1 Background and History

liquid is a free and open-source digital signal processing (DSP) library designed specifically for
software-defined radios on embedded platforms. The aim is to provide a lightweight DSP library
that does not rely on a myriad of external dependencies or proprietary and otherwise cumbersome
frameworks. All signal processing elements are designed to be flexible, scalable, and dynamic,
including filters, filter design, oscillators, modems, synchronizers, and complex mathematical oper-
ations. The source for liquid is written entirely in C so that it can be compiled quickly with a low
memory footprint and easily deployed on embedded platforms.

liquid was created by J. Gaeddert in 2007 out of necessity to perform complex digital signal
processing algorithms on embedded devices with a low memory footprint and little computational
overhead. This was a critical step in his PhD thesis to adapt DSP algorithms in cognitive dynamic-
spectrum radios to optimally manage finite radio resources. The project is not intended to compete
with many other well-known and excellent software radio packages freely available (such as GNU
radio [19] and OSSIE [33]) but was created as a lightweight library which can be used to augment
these projects’ capabilities or be used in embedded platforms were minimizing overhead is critical.
You will notice that liquid lacks any sort of underlying framework for connecting signal processing
“blocks” or “components.” The design was chosen because each application requires the signal
processing block to be redesigned and recompiled for each application anyway so the notion of a
reconfigurable framework is, for the most part, a flawed concept.

In liquid there is no model for passing data between structures, no generic interface for data
abstraction, no customized/proprietary data types, no framework for handling memory manage-
ment; this responsibility is left to the designer, and as a consequence the library provides very
little computational overhead. This package does not provide graphical user interfaces, component
models, or debugging tools; liquid is simply a collection raw signal processing modules providing
flexibility in algorithm development for wireless communications at the physical layer.

2 Quick Start Guide

A full description of installation procedures can be found in Part IV. The library can easily be built
from source and is available from several places. The two most typical means of distribution are a
compressed archive (a tarball) and cloning the source repository.

2.1 Building from a Tarball

If you are building from a tarball download the compressed archive liquid-dsp-v.v.v.tar.gz to
your local machine where v.v.v denotes the version of the release (e.g. liquid-dsp-1.2.0.tar.gz).
Unpack the tarball

$ tar -xvf liquid-dsp-v.v.v.tar.gz

Move into the directory and run the configure script and make the library.

$ cd liquid-dsp-v.v.v

$./configure

$ make

make install

2.2 Cloning the Git Repository 3

2.2 Cloning the Git Repository

You may also build the latest version of the code by cloning the Git repository. The main repository
for liquid is hosted online by github [18] and can be cloned on your local machine via

$ git clone git://github.com/jgaeddert/liquid-dsp.git

Move into the directory, check out a particular tag, and build as before with the archive, but with
the additional bootstrapping step:

$ cd liquid-dsp

$ git checkout v1.2.0

$./reconf

$./configure

$ make

make install

2.3 Additional make Targets

You might also want to build and run the optional validation program (see §27.2) via

$ make check

and the benchmarking tool (see §27.3)

$ make bench

A comprehensive list of signal processing examples is given in the examples directory. You may
build all of the example binaries at one time by running

$ make examples

Sometimes, however, it is useful to build one example individually. This can be accomplished by
directly targeting its binary (e.g. “make examples/cvsd example”). The example then can be run
at the command line (e.g. “./examples/cvsd example”).

3 Data Structures in liquid

Most of liquid’s signal processing elements are C structures which retain the object’s parame-
ters, state, and other useful information. The naming convention is basename xxxt method where
basename is the base object name (e.g. interp), xxxt is the type definition, and method is the
object method. The type definition describes respective output, internal, and input type. Types
are usually f to denote standard 32-bit floating point precision values and can either be represented
as r (real) or c (complex). For example, a dotprod (vector dot product) object with complex input
and output types but real internal coefficients operating on 32-bit floating-point precision values is
dotprod crcf.

Most objects have at least four standard methods: create(), destroy(), print(), and execute().
Certain objects also implement a recreate() method which operates similar to that of realloc()
in C and are used to restructure or reconfigure an object without completely destroying it and

4 3 DATA STRUCTURES IN LIQUID

creating it again. Typically, the user will create the signal processing object independent of the
external (user-defined) data array. The object will manage its own memory until its destroy()

method is invoked. A few points to note:

1. The object is only used to maintain the state of the signal processing algorithm. For example,
a finite impulse response filter (§15.4) needs to retain the filter coefficients and a buffer of input
samples. Certain algorithms which do not retain information (those which are memoryless) do
not use objects. For example, design rnyquist filter() (§15.5.3) calculates the coefficients
of a square-root raised-cosine filter, a processing algorithm which does not need to maintain
a state after its completion.

2. While the objects do retain internal memory, they typically operate on external user-defined
arrays. As such, it is strictly up to the user to manage his/her own memory. Shared pointers
are a great way to cause memory leaks, double-free bugs, and severe headaches. The bottom
line is to remember that if you created a mess, it is your responsibility to clean it up.

3. Certain objects will allocate memory internally, and consequently will use more memory than
others. This memory will only be freed when the appropriate delete() method is invoked.
Don’t forget to clean up your mess!

3.1 Basic Life Cycle

Listed below is an example of the basic life cycle of a iirfilt crcf object (infinite impulse response
filter with complex float inputs/outputs, and real float coefficients). The design parameters of the
filter are specified in the options section near the top of the file. The iirfilt crcf filter object
is then created from the design using the iirfilt crcf create() method. Input and output
data arrays of type float complex are allocated and a loop is run which initializes each input
sample and computes a filter output using the iirfilt crcf execute() method. Finally the filter
object is destroyed using the iirfilt crcf destroy() method, freeing all of the object’s internally
allocated memory.

1 // file: doc/listings/lifecycle.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int order=4; // filter order

7 float fc=0.1f; // cutoff frequency

8 float f0=0.25f; // center frequency (bandpass|bandstop)

9 float Ap=1.0f; // pass-band ripple [dB]

10 float As=40.0f; // stop-band attenuation [dB]

11 liquid_iirdes_filtertype ftype = LIQUID_IIRDES_ELLIP;

12 liquid_iirdes_bandtype btype = LIQUID_IIRDES_BANDPASS;

13 liquid_iirdes_format format = LIQUID_IIRDES_SOS;

14

15 // CREATE filter object (and print to stdout)

16 iirfilt_crcf myfilter;

17 myfilter = iirfilt_crcf_create_prototype(ftype,

18 btype,

3.2 Why C? 5

19 format,

20 order,

21 fc, f0,

22 Ap, As);

23 iirfilt_crcf_print(myfilter);

24

25 // allocate memory for data arrays

26 unsigned int n=128; // number of samples

27 float complex x[n]; // input samples array

28 float complex y[n]; // output samples array

29

30 // run filter

31 unsigned int i;

32 for (i=0; i<n; i++) {

33 // initialize input

34 x[i] = randnf() + _Complex_I*randnf();

35

36 // EXECUTE filter (repeat as many times as desired)

37 iirfilt_crcf_execute(myfilter, x[i], &y[i]);

38 }

39

40 // DESTROY filter object

41 iirfilt_crcf_destroy(myfilter);

42 }

A more comprehensive example is given in the example file examples/iirfilt crcf example.c,
located under the main liquid project directory.

3.2 Why C?

A commonly asked question is “why C and not C++?” The answer is simple: portability. The
project’s aim is to provide a lightweight DSP library for software-defined radio that does not rely
on a myriad of dependencies. While C++ is a fine language for many projects (and theoretically
runs just as fast as C), it is not as portable to embedded platforms as C and typically has a larger
memory footprint. Furthermore, the majority of functions simply perform complex operations
on a data sequence and do not require a high-level object-oriented programming interface. The
significance of object-oriented programming is the techniques used, not the languages describing it.

While a number of signal processing elements in liquid use structures, these are simply to save
the internal state of the object. For instance, a firfilt crcf (finite impulse response filter) object
is just a structure which contains—among other things—the filter taps (coefficients) and an input
buffer. This simplifies the interface to the user; one only needs to “push” elements into the filter’s
internal buffer and “execute” the dot product when desired. This could also be accomplished with
classes, a construct specific to C++ and other high-level object-oriented programming languages;
however, for the most part, C++ polymorphic data types and abstract base classes are unnecessary
for basic signal processing, and primarily just serve to reduce the code base of a project at the
expense of increased compile time and memory overhead. Furthermore, while C++ templates can
certainly be useful for library development their benefits are of limited use to signal processing
and can be circumvented through the use of pre-processor macros at the gain of increasing the
portability of the code. Under the hood, the C++ compiler’s pre-processor expands templates and

6 3 DATA STRUCTURES IN LIQUID

classes before actually compiling the source anyway, so in this sense they are equivalent to the
second-order macros used in liquid.

The C programming language has a rich history in system programming—specifically targeting
embedded applications—and is the basis behind many well-known projects including the Linux
kernel [28] and the python programming language [36]. Having said this, high-level frameworks and
graphical interfaces are much more suited to be written in C++ and will beat an implementation
in C any day but lie far outside the scope of this project.

3.3 Data Types

The majority of signal processing for SDR is performed at complex baseband. Complex numbers
are handled in liquid by defining data type liquid float complex which is simply a place-holder
for the standard C math type float complex and C++ type std::complex<float>. There are no
custom/proprietary data types in liquid!1 Custom data types only promote lack of interoperability
between libraries requiring conversion procedures which slow down computation. For those of you
who like to dig through the source code might have stumbled upon the typedef macros at the
beginning of the global header file include/liquid.h which creates new complex data types based
on the compiler, (e.g. liquid complex float). While technically this code does define of a new
type specification, its purpose is for compatibility between compilers and programming language
(see §3.4 on C++ portability), and is binary compatible with the standard C99 specification. In
fact, these data types are only used in the header file and should not be used when programming.
For example, the following example program demonstrates the interface in C:

1 // file: doc/listings/nco.c

2 // build: gcc -c -o nco.c.o nco.c

3 // link: gcc -lm -lc -lliquid nco.c.o -o nco

4

5 # include <stdio.h>

6 # include <math.h>

7 # include <liquid / liquid.h>

8 # include <complex.h>

9

10 int main() {

11 // create nco object and initialize

12 nco_crcf n = nco_crcf_create(LIQUID_NCO);

13 nco_crcf_set_phase(n,0.3f);

14

15 // Test native C complex data type

16 float complex x;

17 nco_crcf_cexpf(n, &x);

18 printf("C native complex: %12.8f + j%12.8f\n", crealf(x), cimagf(x));

19

20 // destroy nco object

21 nco_crcf_destroy(n);

22

23 printf("done.\n");

1The only exception to this are the fixed-point data types, defined in the liquid-fpm library which hasn’t been
released yet, and even these data types are actually standard signed integers.

3.4 Building/Linking with C++ 7

24 return 0;

25 }

3.4 Building/Linking with C++

Although liquid is written in C, it can be seamlessly compiled and linked with C++ source files.
Here is a C++ example comparable to the C program listed in the previous section:

1 // file: doc/listings/nco.cc

2 // build: g++ -c -o nco.cc.o nco.cc

3 // link: g++ -lm -lc -lliquid nco.cc.o -o nco

4

5 # include <iostream>

6 # include <math.h>

7

8 # include <liquid / liquid.h>

9

10 // NOTE: the definition for liquid_float_complex will change

11 // depending upon whether the standard C++ <complex>

12 // header file is included before or after including

13 // <liquid/liquid.h>

14 # include <complex>

15

16 int main() {

17 // create nco object and initialize

18 nco_crcf n = nco_crcf_create(LIQUID_NCO);

19 nco_crcf_set_phase(n,0.3f);

20

21 // Test liquid complex data type

22 liquid_float_complex x;

23 nco_crcf_cexpf(n, &x);

24 std::cout << "liquid complex: "

25 << x.real << " + j" << x.imag << std::endl;

26

27 // Test native c++ complex data type

28 std::complex<float> y;

29 nco_crcf_cexpf(n, reinterpret_cast<liquid_float_complex*>(&y));

30 std::cout << "c++ native complex: "

31 << y.real() << " + j" << y.imag() << std::endl;

32

33 // destroy nco object

34 nco_crcf_destroy(n);

35

36 std::cout << "done." << std::endl;

37 return 0;

38 }

It is important, however, to link the code with a C++ linker rather than a C linker. For example,
if the above program (nco.cc) is compiled with g++ it must also be linked with g++, viz

$ g++ -c -o nco.cc.o nco.cc

$ g++ -lm -lc -lliquid nco.cc.o -o nco

8 3 DATA STRUCTURES IN LIQUID

3.5 Learning by example

While this document contains numerous examples listed in the text, they are typically condensed
to demonstrate only the interface. The examples/ subdirectory includes more extensive demon-
strations and numerous examples for all the signal processing components. Many of these examples
write an output file which can be read by octave [11] to display the results graphically. For a brief
description of each of these examples, see examples/README.

9

Part II

Tutorials

To get you started with using liquid signal processing library this manual begins with tutorials
rather than diving into the details of each signal processing module. The tutorials begin with
simple building blocks for signal processing by introducing a simple analog phase-locked loop
which tracks to the phase of an input complex sinusoid. The forward error-correction tutorial
introduces you to simple error correction and detection capabilities. The framing tutorial puts
together data encapsulation with digital modulation; with just a few lines of code you can convert
a block of raw, unencoded data bytes to frame samples ready to transmit over the air. Last but not
least is the OFDM framing tutorial which builds on the previous tutorial to use an orthogonal
parallel multiplexing communications scheme. Detailed examples of nearly every module can be
found in the examples directory.

10 4 TUTORIAL: PHASE-LOCKED LOOP

4 Tutorial: Phase-Locked Loop

This tutorial demonstrates the functionality of a carrier phase-locked loop and introduces the
iirfilt object. You will need on your local machine:

• the liquid DSP libraries built and installed (see §26)

• a text editor such as vim [43]

• a C compiler such as gcc [16]

• a terminal

The problem statement and a brief theoretical description of phase-locked loops is given in the next
section. A walk-through of the source code follows.

4.1 Problem Statement

Wireless communications systems up-convert the data signal with a high-frequency carrier before
transmitting over the air. This transmitted signal is orthogonal to other signals so long as their
bandwidths don’t overlap and can be recovered at the receiver by mixing it back down to baseband.
Many digital communications systems modulate information in the phase of the carrier requiring
the receiver to demodulate the signal coherently in order to recover the original data message. In
this regard the receiver must synchronize its carrier oscillator to that of the transmitter. To put it
simply, the receiver must lock on to the phase of transmitter’s carrier. One of the key advantages
to performing signal processing in software is that the radio can operate at complex baseband.

In this simulation, the received signal is simply a complex sinusoid with an unknown initial
carrier phase and frequency. The carrier holds no information-bearing symbols and is simply a
tone whose frequency and phase represent the residual mismatch between the transmitter and
receiver. The received signal x at time step k can be described as

xk = exp
{
j(θ + kω)

}
(1)

where j ,
√
−1 and θ and ω represent the unknown initial carrier phase and frequency offsets,

respectively. The receiver generates a complex sinusoid with a phase φk as the phase difference
between xk and yk and can be computed as

yk = exp
{
jφk
}

(2)

The phase error at time step k is expressed as

∆φk = arg
{
xky

∗
k

}
(3)

where (∗) denotes complex conjugation.2 The goal of the receiver is to control φk (the phase of
the output signal y at time k) to lock onto the input phase of x, hence the name “phase-locked

2Those who are savvy with communications techniques will appreciate that we are dealing in complex baseband
and can easily compute the phase error estimate simply as the argument of the product of xk and yk. Conventional
PLLs which have operated strictly in the real domain multiply only the real components of xk and yk for a phase
error estimate, assume that the loop filter rejects the high-frequency component, and make the approximation ∆φ ≈
sin(∆φ) = sin(φ− φ̂) for small phase errors.

4.2 Setting up the Environment 11

loop.” If the phase of the output sample yk is behind that of the input (∆φ > 0) then φ needs to
be advanced appropriately for the next time step. Conversely, if the phase of yk is ahead of the
phase of xk (∆φ < 0) then the receiver need to retard φ.

Without going into a great amount of detail, this control is accomplished using a special filter
within the loop. This filter, known as a “loop filter,” is designed to reject high-frequency noise and
is described with the transfer function H(z). Specifically H(z) is a 2nd-order integrating low-pass
recursive filter with a natural frequency ωn, a damping factor ζ, and a loop gain K. The natural
frequency is the resonant frequency of H(z) and for all practical purposes is the filter’s bandwidth.
Increasing ωn permits the loop to track to the input signal faster (reduces lock time), but also
increases the amount of noise passed through the loop. Decreasing ωn reduces this noise but also
increases the loop’s acquisition time. The damping factor ζ controls the stability of the filter and
is typically set to a value near 1/

√
2 ≈ 0.707. The loop gain K is typically very large (on the order

of 1000 or so). For more detailed information on loop filter design the interested reader is referred
to §20.2.

The estimated phase error ∆φk is filtered using H(z) resulting in an output phase estimate
φk+1 which is used for the subsequent output sample yk+1 as

yk+1 = exp
{
jφk+1

}
(4)

Algorithm 1 Phase-locked Loop Control

1: x← {x0, x1, x2, . . .} (input array)
2: φ̂0 ← 0 (initial output phase)
3: for k = 0, 1, 2, . . . do
4: yk ← exp

{
jφ̂k
}

(compute output sample)
5: ∆φk ← arg

{
xky

∗
k

}
(phase detector)

6: φ̂k+1 ← filter(∆φk) (update output phase estimate)
7: end for

A summary of the algorithm is given in Algorithm 1. In the next section we will create a simple
C program to simulate a phase-locked loop with liquid.

4.2 Setting up the Environment

For this tutorial and others, I assume that you are using the GNU compiler collection (gcc) for
compiling source and linking objects [16], and that you have a familiarity with the C (or C++)
programming language. Create a new file pll.c and open it with your favorite editor. Include the
headers stdio.h, complex.h, math.h, and liquid/liquid.h and add the int main() definition
so that your program looks like this:

1 // file: doc/tutorials/pll_init_tutorial.c

2 # include <stdio.h>

3 # include <complex.h>

4 # include <math.h>

5 # include <liquid / liquid.h>

6

7 int main() {

12 4 TUTORIAL: PHASE-LOCKED LOOP

8 printf("done.\n");

9 return 0;

10 }

Compile and link the program using gcc:

$ gcc -Wall -o pll -lm -lc -lliquid pll.c

The flag “-Wall” tells the compiler to print all warnings (unused and uninitialized variables, etc.),
“-o pll” specifies the name of the output program is “pll”, and “-lm -lc -lliquid” tells the
linker to link the binary against the math, standard C, and liquid DSP libraries, respectively. Notice
that the above command invokes both the compiler and the linker collectively. If the compiler did
not give any errors, the output executable pll is created which can be run as

$./pll

and should simply print “done.” to the screen. You are now ready to add functionality to your
program.

We will now edit the file to set up the basic simulation but without controlling the phase of
the output sinusoid. As such the output won’t track to the input resulting in a significant amount
of phase error. This simulation will operate one sample at a time and is organized into three
sections. First, set up the simulation parameters: the initial phase and frequency offsets (float),
and number of samples to run (unsigned int). Next, initialize the complex input and output
variables (x and y) to zero, as well as the state of the phase error (phase error) and output phase
(phi hat) estimates. Finally, set up the computational loop which generates the input and output
samples, computes the phase error between them, and then prints the results to the screen. Edit
pll.c to set up the basic simulation:

1 // file: doc/tutorials/pll_basic_tutorial.c

2 # include <stdio.h>

3 # include <complex.h>

4 # include <math.h>

5 # include <liquid / liquid.h>

6

7 int main() {

8 // simulation parameters

9 float phase_offset = 0.8f; // initial phase offset

10 float frequency_offset = 0.01f; // initial frequency offset

11 unsigned int n = 40; // number of iterations

12

13 float complex x = 0; // input sample

14 float phase_error = 0; // phase error estimate

15 float phi_hat = 0; // output sample phase

16 float complex y = 0; // output sample

17

18 unsigned int i;

19 for (i=0; i<n; i++) {

20 // generate input sample

21 x = cexpf(_Complex_I*(phase_offset + i*frequency_offset));

22

23 // generate output sample

4.3 Designing the Loop Filter 13

24 y = cexpf(_Complex_I*phi_hat);

25

26 // compute phase error

27 phase_error = cargf(x*conjf(y));

28

29 // print results to screen

30 printf("%3u : phase = %12.8f, error = %12.8f\n", i, phi_hat, phase_error);

31 }

32

33 printf("done.\n");

34 return 0;

35 }

The variables x and y are of type float complex which contains both real and imaginary com-
ponents of type float. The function cexpf() computes the complex exponential of its argument
which for a purely imaginary input jα is simply ejα = cosα+ j sinα.

Compile and run the program as before. The program should now output something like this:

0 : phase = 0.00000000, error = 0.80000001

1 : phase = 0.00000000, error = 0.81000000

2 : phase = 0.00000000, error = 0.81999999

3 : phase = 0.00000000, error = 0.82999998

4 : phase = 0.00000000, error = 0.84000003

...

35 : phase = 0.00000000, error = 1.14999998

36 : phase = 0.00000000, error = 1.15999997

37 : phase = 0.00000000, error = 1.17000008

38 : phase = 0.00000000, error = 1.18000007

39 : phase = 0.00000000, error = 1.19000006

done.

Notice that because we aren’t controlling the output phase yet the error increases with the input
phase. In the next section we will design the loop filter to adjust the output phase to lock onto the
input signal given the phase error.

4.3 Designing the Loop Filter

Our program so far has not used any of the liquid DSP libraries for computation and has only relied
on the standard C libraries for dealing with complex math operations. In this section we will intro-
duce liquid’s iirfilt rrrf object to realize a recursive (infinite impulse response) filter with real
inputs, coefficients, and outputs. Additionally we will use the function iirdes pll active lag()

to design the coefficients for the PLL’s filter, specifically an “active lag” design. While the expla-
nation in this section is fairly long, relax! We will only need to add about 15 lines of code to our
program. If you are eager to edit your program you may skip to §4.4.

Digital representations of infinite impulse response (IIR) filters have two sets of coefficients:
feedback and feedforward. In the digital domain the transfer function is a ratio of the polynomials
in z−1 where the feedforward coefficients b = {b0, b1, b2, . . . , bN−1} are in the numerator and the
feedback coefficients a = {a0, a1, a2, . . . , aM−1} are in the denominator. Specifically, the transfer

14 4 TUTORIAL: PHASE-LOCKED LOOP

function is

H(z) =
b0 + b1z

−1 + b2z
−2 + . . .+ bN−1z

−(N−1)

a0 + a1z−1 + a2z−2 + . . .+ aM−1z−(M−1)
(5)

This transfer function means that the output of the filter is the linear combination of the N previous
filter inputs (x) and M − 1 previous filter outputs (y), viz

y[k] =
1

a0

(
b0x[k] + b1x[k − 1] + · · ·+ bN−1x[k −N] (6)

− a1y[k − 1]− · · · − aM−1y[k −M]
)

(7)

Typically the number of feedback and feedforward coefficients are equal (M = N), and the coeffi-
cients themselves are normalized so that a0 = 1.

liquid implements IIR filters with the iirfilt xxxt family of objects where “xxxt” denotes
the type definition (see §3 for details). In our example we will be using the iirfilt rrrf object
which indicates that this is an IIR filter with real inputs, outputs, and coefficients with precision
of type float. The IIR filter objects in liquid maintain their state internally, storing the previous
inputs and outputs in its internal buffers. Nearly every object in liquid (filter or otherwise) has at
least four basic methods: create(), print(), execute(), and destroy(). For our program we
will need to create the filter object by passing to it a vector of each the feedback and feedforward
coefficients. The infinite impulse response (IIR) filter we are designing is of order two which means
that a and b have three coefficients each.

Generating the loop filter coefficients is fairly straightforward. As stated before, the loop filter
has parameters for natural frequency ωn, damping factor ζ, and loop gain K. Furthermore the
filter is 2nd-order which means that it has three coefficients each for a and b. liquid provides a
method for computing such a filter with the iirdes pll active lag() function which accepts ωn,
ζ, and K as inputs and generates the coefficients in two output arrays. The coefficients can be
computed as follows:

float wn = 0.1f; // pll bandwidth

float zeta = 0.707f; // pll damping factor

float K = 1000.0f; // pll loop gain

float b[3]; // feedforward coefficients array

float a[3]; // feedback coefficients array

iirdes_pll_active_lag(wn, zeta, K, b, a);

The life cycle of the IIR filter can be summarized as follows

iirfilt_rrrf loopfilter = iirfilt_rrrf_create(b,3,a,3);

float sample_in = 0.0f;

float sample_out;

{

// repeat as necessary

iirfilt_rrrf_execute(loopfilter, sample_in, &sample_out);

}

iirfilt_rrrf_destroy(loopfilter);

noting that the execute() method can be repeated as many times as necessary before the object
is destroyed.

4.4 Final Program 15

Using the code snippets above, modify your program to include the loop filter to adjust the
output signal’s phase. The input to the filter will be the phase error variable, and its output will
be phi hat. Don’t forget to destroy your filter object once the loop has finished running.

4.4 Final Program

The final program is listed below, and a copy of the source is located in the doc/tutorials/

subdirectory.

1 // file: doc/tutorials/pll_tutorial.c

2 # include <stdio.h>

3 # include <complex.h>

4 # include <math.h>

5 # include <liquid / liquid.h>

6

7 int main() {

8 // simulation parameters

9 float phase_offset = 0.8f; // initial phase offset

10 float frequency_offset = 0.01f; // initial frequency offset

11 float wn = 0.10f; // pll bandwidth

12 float zeta = 0.707f; // pll damping factor

13 float K = 1000; // pll loop gain

14 unsigned int n = 40; // number of iterations

15

16 // generate IIR loop filter coefficients

17 float b[3]; // feedforward coefficients

18 float a[3]; // feedback coefficients

19 iirdes_pll_active_lag(wn, zeta, K, b, a);

20

21 // create and print the loop filter object

22 iirfilt_rrrf loopfilter = iirfilt_rrrf_create(b,3,a,3);

23 iirfilt_rrrf_print(loopfilter);

24

25 float complex x = 0; // input sample

26 float phase_error = 0; // phase error estimate

27 float phi_hat = 0; // output sample phase

28 float complex y = 0; // output sample

29

30 unsigned int i;

31 for (i=0; i<n; i++) {

32 // generate input sample

33 x = cexpf(_Complex_I*(phase_offset + i*frequency_offset));

34

35 // generate output sample

36 y = cexpf(_Complex_I*phi_hat);

37

38 // compute phase error

39 phase_error = cargf(x*conjf(y));

40

41 // run error through loop filter

42 iirfilt_rrrf_execute(loopfilter, phase_error, &phi_hat);

16 4 TUTORIAL: PHASE-LOCKED LOOP

43

44 // print results to screen

45 printf("%3u : phase = %12.8f, error = %12.8f\n", i, phi_hat, phase_error);

46 }

47

48 // destroy IIR filter object

49 iirfilt_rrrf_destroy(loopfilter);

50

51 printf("done.\n");

52 return 0;

53 }

Compile the program as before, creating the executable “pll.” Running the program should
produce an output similar to this:

iir filter [normal]:

b : 0.32277358 0.07999840 -0.24277516

a : 1.00000000 -1.99995995 0.99996001

0 : phase = 0.25821885, error = 0.80000001

1 : phase = 0.75852644, error = 0.55178112

2 : phase = 1.12857747, error = 0.06147351

3 : phase = 1.27319980, error = -0.29857749

4 : phase = 1.23918116, error = -0.43319979

...

35 : phase = 1.15999877, error = 0.00000751

36 : phase = 1.17000139, error = 0.00000122

37 : phase = 1.18000150, error = -0.00000131

38 : phase = 1.19000030, error = -0.00000140

39 : phase = 1.19999886, error = -0.00000024

done.

Notice that the phase error at the end of the output is very small. The initial error (at k = 0)
is 0.8 which is the value of the phase offset parameter at the beginning of the program. Notice
also that the difference in phase of the last several samples (i.e. the difference between the phase
at steps 38 and 39) is approximately 0.1 which is the initial frequency offset that was given in the
beginning. Play around with the input parameters, particularly the frequency offset and the phase-
locked loop bandwidth. Increasing the PLL bandwidth (wn) should reduce the resulting phase error
more quickly. The downside of having a PLL with a large bandwidth is that when the input signal
has been corrupted by noise then the phase error estimate is also noisy. In this tutorial no noise
term was introduced.

17

5 Tutorial: Forward Error Correction

This tutorial will demonstrate computation at the byte level (raw message data) by introducing
the forward error-correction (FEC) coding module. Please note that liquid only provides some very
basic FEC capabilities including some Hamming block codes and repeat codes. While these codes
are very fast and enough to get started, they are not very efficient and add a lot of redundancy
without providing a strong level of correcting capabilities. liquid will use the convolutional and
Reed-Solomon codes described in libfec [25] if installed on your machine.

5.1 Problem Statement

Digital communications over a noisy channel can be unreliable, resulting in errors at the receiver.
Forward error-correction (FEC) coding adds redundancy to the original data message that allows
for some errors to be corrected at the receiver. The error-correction capability of the code is
dependent upon many factors, but is usually improved by increasing the amount of redundancy
added to the message. The drawback to adding a lot of redundancy is that the communications
rate is decreased as the link must be shared among the important data information as well as the
redundant bits. The benefit, however, is that the receiver has a better chance of correcting the
errors without having to request a retransmission of the message. Volumes of research papers and
books have been written about the error-correction capabilities of certain FEC encoder/decoder
pairs (codecs) and their performance in a variety of environments. While there is far too much
information on the subject to discuss here, it is important to note that liquid implements a very
small subset of simple FEC codecs, including several Hamming and repeat codes. If the libfec [25]
library is installed when liquid is configured this list extends to convolutional and Reed-Solomon
codes.

In this tutorial you will create a simple program that will generate a message, encode it using
a simple Hamming(7,4) code, corrupt the encoded message by adding an error, and then try to
correct the error with the decoder.

5.2 Setting up the Environment

Create a new file fec.c and open it with your favorite editor. Include the headers stdio.h and
liquid/liquid.h and add the int main() definition so that your program looks like this:

1 // file: doc/tutorials/fec_init_tutorial.c

2 # include <stdio.h>

3 # include <liquid / liquid.h>

4

5 int main() {

6 printf("done.\n");

7 return 0;

8 }

Compile and link the program using gcc:

$ gcc -Wall -o fec -lm -lc -lliquid fec.c

The flag “-Wall” tells the compiler to print all warnings (unused and uninitialized variables, etc.),
“-o fec” specifies the name of the output program is “fec”, and “-lm -lc -lliquid” tells the

18 5 TUTORIAL: FORWARD ERROR CORRECTION

linker to link the binary against the math, standard C, and liquid DSP libraries, respectively. Notice
that the above command invokes both the compiler and the linker collectively. If the compiler did
not give any errors, the output executable fec is created which can be run as

$./fec

and should simply print “done.” to the screen. You are now ready to add functionality to your
program.

We will now edit the file to set up the basic simulation by generating a message signal and
counting errors as a result of channel effects. The error-correction capabilities will be added in the
next section. First set up the simulation parameters: for now the only parameter will be the length
of the input message, denoted by the variable n (unsigned int) representing the number of bytes.
Initialize n to 8 to reflect an original message of 8 bytes. Create another unsigned int variable
k which will represent the length of the encoded message. This length is equal to the original (n)
with the additional redundancy. For now set k equal to n as we are not adding FEC coding until
the next section. This implies that without any redundancy, the receiver cannot correct for any
errors.

Message data in liquid are represented as arrays of type unsigned char. Allocate space for the
original, encoded, and decoded messages as msg org[n], msg enc[k], and msg dec[n], respectively.
Initialize the original data message as desired. For example, the elements in msg org can contain
0,1,2,...,n-1. Copy the contents of msg org to msg enc. This effectively is a placeholder for
forward error-correction which will be discussed in the next section. Corrupt one of the bits
in msg enc (e.g. msg enc[0] ^= 0x01; will flip the least-significant bit in the first byte of the
msg enc array), and copy the results to msg dec. Print the encoded and decoded messages to the
screen to verify that they are not equal. Without any error-correction capabilities, the receiver
should see a message different than the original because of the corrupted bit. Count the number of
bit differences between the original and decoded messages. liquid provides a convenient interface
for doing this and can be invoked as

unsigned int num_bit_errors = count_bit_errors_array(msg_org,

msg_dec,

n);

Print this number to the screen. Your program should look similar to this:

1 // file: doc/tutorials/fec_basic_tutorial.c

2 # include <stdio.h>

3 # include <liquid / liquid.h>

4

5 int main() {

6 // simulation parameters

7 unsigned int n = 8; // original data length (bytes)

8

9 // compute size of encoded message

10 unsigned int k = n; // (no encoding yet)

11

12 // create arrays

13 unsigned char msg_org[n]; // original data message

14 unsigned char msg_enc[k]; // encoded/received data message

5.3 Creating the Encoder/Decoder 19

15 unsigned char msg_dec[n]; // decoded data message

16

17 unsigned int i;

18 // create message

19 for (i=0; i<n; i++) msg_org[i] = i & 0xff;

20

21 // "encode" message (copy to msg_enc)

22 for (i=0; i<n; i++) msg_enc[i] = msg_org[i];

23

24 // corrupt encoded message (flip bit)

25 msg_enc[0] ^= 0x01;

26

27 // "decode" message (copy to msg_dec)

28 for (i=0; i<n; i++) msg_dec[i] = msg_enc[i];

29

30 printf("original message: [%3u] ",n);

31 for (i=0; i<n; i++)

32 printf(" %.2X", msg_org[i]);

33 printf("\n");

34

35 printf("decoded message: [%3u] ",n);

36 for (i=0; i<n; i++)

37 printf(" %.2X", msg_dec[i]);

38 printf("\n");

39

40 // count bit errors

41 unsigned int num_bit_errors = count_bit_errors_array(msg_org, msg_dec, n);

42 printf("number of bit errors received: %3u / %3u\n", num_bit_errors, n*8);

43

44 return 0;

45 }

Compile the program as before, creating the executable “fec.” Running the program should
produce an output similar to this:

original message: [8] 00 01 02 03 04 05 06 07

decoded message: [8] 01 01 02 03 04 05 06 07

number of bit errors received: 1 / 64

Notice that the decoded message differs from the original and that the number of received errors
is nonzero.

5.3 Creating the Encoder/Decoder

So far our program doesn’t use any liquid interfaces (except for the function used to count bit
errors). The FEC module in liquid provides a simple interface for adding forward error-correction
capabilities to your project. The fec object abstracts from the gritty details behind the bit manip-
ulation (packing/unpacking of bytes, appending tail bits, etc.) of error-correction structures. As
an example, convolutional codes observe bits one at a time while Reed-Solomon codes operate on
entire blocks of bits. The fec object in liquid conveniently abstracts from the organization of the
codec and takes care of this overhead internally. This allows seamless integration of different codecs

20 5 TUTORIAL: FORWARD ERROR CORRECTION

with one simple interface. As with the iirfilt rrrf object in the phase-locked loop tutorial (§4)
the fec object has methods create(), print(), and destroy(). Nearly every object in liquid
has these methods; however the fec object replaces execute() with encode() and decode() as
the same object instance can be used for both encoding and decoding. The fec create() method
accepts two arguments, although the second one is basically ignored. The first argument is an
enumeration of the type of codec that you wish to use.

To begin, create a new fec object of type LIQUID FEC HAMMING74 (the second argument can
simply be NULL) which creates a Hamming(7,4) code:

fec q = fec_create(LIQUID_FEC_HAMMING74, NULL);

Details of the available codes in liquid can be found in §13. This codec nominally accepts 4 bits,
appends 3 parity bits, and can detect and correct up to one of these seven transmitted bits. The
Hamming(7,4) code is not particularly strong for its rate; however it is computationally efficient
and has been studied extensively in coding theory. The interface provided by liquid conveniently ab-
stracts from the process of managing 8-bit data symbols (bytes), converting to 4-bit input symbols,
encoding to 7-bit output symbols, and then re-packing into 8-bit output bytes. This is consistent
with any forward error-correction code in liquid; as the user, you simply see data bytes in and data
bytes out. The length of the output sequence can be computed using the method

unsigned int k = fec_get_enc_msg_length(LIQUID_FEC_HAMMING74, n);

where n represents the number of uncoded input bytes and k represents the number of encoded
output bytes. This value should be used to appropriately allocate enough memory for the encoded
message. Encoding the data message is as simple as invoking

fec_encode(q, n, msg_org, msg_enc);

which uses our newly-created fec object q to encode n input bytes in the array msg org and store
the result in the output array msg enc. The interface for decoding is nearly identical:

fec_decode(q, n, msg_enc, msg_dec);

Notice that the second argument again represents the number of uncoded data bytes (n). Don’t
forget to destroy the object once you are finished:

fec_destroy(q);

5.4 Final Program

The final program is listed below, and a copy of the source is located in the doc/tutorials/

subdirectory.

1 // file: doc/tutorials/fec_tutorial.c

2 # include <stdio.h>

3 # include <liquid / liquid.h>

4

5 int main() {

6 // simulation parameters

7 unsigned int n = 8; // original data length (bytes)

8 fec_scheme fs = LIQUID_FEC_HAMMING74; // error-correcting scheme

5.4 Final Program 21

9

10 // compute size of encoded message

11 unsigned int k = fec_get_enc_msg_length(fs,n);

12

13 // create arrays

14 unsigned char msg_org[n]; // original data message

15 unsigned char msg_enc[k]; // encoded/received data message

16 unsigned char msg_dec[n]; // decoded data message

17

18 // CREATE the fec object

19 fec q = fec_create(fs,NULL);

20 fec_print(q);

21

22 unsigned int i;

23 // generate message

24 for (i=0; i<n; i++)

25 msg_org[i] = i & 0xff;

26

27 // encode message

28 fec_encode(q, n, msg_org, msg_enc);

29

30 // corrupt encoded message (flip bit)

31 msg_enc[0] ^= 0x01;

32

33 // decode message

34 fec_decode(q, n, msg_enc, msg_dec);

35

36 // DESTROY the fec object

37 fec_destroy(q);

38

39 printf("original message: [%3u] ",n);

40 for (i=0; i<n; i++)

41 printf(" %.2X", msg_org[i]);

42 printf("\n");

43

44 printf("decoded message: [%3u] ",n);

45 for (i=0; i<n; i++)

46 printf(" %.2X", msg_dec[i]);

47 printf("\n");

48

49 // count bit errors

50 unsigned int num_bit_errors = count_bit_errors_array(msg_org, msg_dec, n);

51 printf("number of bit errors received: %3u / %3u\n", num_bit_errors, n*8);

52

53 printf("done.\n");

54 return 0;

55 }

The output should look like this:

fec: Hamming(7,4) [rate: 0.571]

original message: [8] 00 01 02 03 04 05 06 07

22 5 TUTORIAL: FORWARD ERROR CORRECTION

decoded message: [8] 00 01 02 03 04 05 06 07

number of bit errors received: 0 / 64

done.

Notice that the decoded message matches that of the original message, even though an error was
introduced at the receiver. As discussed above, the Hamming(7,4) code is not particularly strong;
if too many bits in the encoded message are corrupted then the decoder will be unable to correct
them. Play around with changing the length of the original data message, the encoding scheme,
and the number of errors introduced.

For a more detailed program, see examples/fec example.c in the main liquid directory. §13
describes liquid’s FEC module in detail. Additionally, the packetizer object extends the simplicity
of the fec object by adding a cyclic redundancy check and two layers of forward error-correction and
interleaving, all of which can be reconfigured as desired. See §16.2 and examples/packetizer example.c

for a detailed example program on how to use the packetizer object.

23

6 Tutorial: Framing

In the previous tutorials we have created only the basic building blocks for wireless communication.
This tutorial puts them all together by introducing a very simple framing structure for sending and
receiving data over a wireless link. In this context “framing” refers to the encapsulation of data into
a modulated time series at complex baseband to be transmitted over a wireless link. Conversely,
“packets” refer to packing raw message data bytes with forward error-correction and data validity
check redundancy.

6.1 Problem Statement

For this tutorial we will be using the framegen64 and framesync64 objects in liquid. As you
might have guessed framegen64 is the frame generator object on the transmit side of the link
and framesync64 is the frame synchronizer on the receive side. Together these objects realize
a a very simple frame which encapsulates a 12-byte header and 64-byte payload within a frame
consisting of 640 symbols at complex baseband. Conveniently the frame generator interpolates
these symbols with a matched filter to produce a 1280-sample frame at complex baseband, ready
to be up-converted and transmitted over the air. This frame has a nominal spectral efficiency of
0.8 bits/second/Hz (512 bits from 64 payload bytes assembled in 640 symbols).3 This means that
if you transmit with a symbol rate of 10kHz you should expect to see a throughput of 8kbps if
all the frames are properly decoded. On the receiving side, raw samples at complex baseband are
streamed to an instance of the frame synchronizer which picks out frames and invokes a user-defined
callback function. The synchronizer corrects for gain, carrier, and sample timing offsets (channel
impairments) in the complex baseband samples with a minimal amount of pre-processing required
by the user. To help with synchronization, the frame includes a special preamble which can be seen
in the figure below.

time

si
gn

a
l
le
ve
l

ra
m
p
up

pr
ea
m
bl
e
ph
as
in
g

p/
n
se
qu
en
ce

he
ad
er

pa
yl
oa
d

ra
m
p
do
wn

After up-conversion (mixing up to a carrier frequency) the frame is transmitted over the link where
the receiver mixes the signal back down to complex baseband. The received signal will be attenuated
and noisy and typically degrades with distance between the two radios. Also, because receiver’s
oscillators run independent of the transmitter’s, this received signal will have other impairments
such as carrier and timing offsets. In our program we will be operating at complex baseband and
will add the channel impairments artificially.

The frame synchronizer’s purpose is to correct for all of these impairments (within limitations,
of course) and attempt to detect the frame and decode its data. The framing preamble assists
the synchronizer by introducing special phasing sequences before any information-bearing symbols

3For simplicity this computation of spectral efficiency neglects any excess bandwidth of the pulse-shaping filter.

24 6 TUTORIAL: FRAMING

which aids in correcting for carrier and timing offsets. Without going into great detail, these
sequences significantly increase the probability of frame detection and decoding while adding a
minimal amount of overhead to the frame; a small price to pay for increased data reliability!

6.2 Setting up the Environment

As with the other tutorials I assume that you are using gcc to compile your programs and link to
appropriate libraries. Create a new file framing.c and include the headers stdio.h, stdlib.h,
math.h, complex.h, and liquid/liquid.h. Add the int main() definition so that your program
looks like this:

1 // file: doc/tutorials/framing_init_tutorial.c

2 # include <stdio.h>

3 # include <stdlib.h>

4 # include <math.h>

5 # include <complex.h>

6 # include <liquid / liquid.h>

7

8 int main() {

9 printf("done.\n");

10 return 0;

11 }

Compile and link the program using gcc:

$ gcc -Wall -o framing -lm -lc -lliquid framing.c

The flag “-Wall” tells the compiler to print all warnings (unused and uninitialized variables, etc.),
“-o framing” specifies the name of the output program is “framing”, and “-lm -lc -lliquid”
tells the linker to link the binary against the math, standard C, and liquid DSP libraries, respec-
tively. Notice that the above command invokes both the compiler and the linker collectively. If the
compiler did not give any errors, the output executable framing is created which can be run as

$./framing

and should simply print “done.” to the screen. You are now ready to add functionality to your
program.

6.3 Creating the Frame Generator

The particular framing structure we will be using accepts a 12-byte header and a 64-byte payload
and assembles them into a frame consisting of 1280 samples. These sizes are fixed and cannot be
adjusted for this framing structure.4 The purpose of the header is to conveniently allow the user a
separate control channel to be packaged with the payload. For example, if your application is to send
a file using multiple frames, the header can include an identification number to indicate where in the
file it should be written. Another application of the header is to include a destination node identifier
for use in packet routing for ad hoc networks. Both the header and payload are assembled with a

4Alternatively, the flexframegen and flexframesync objects implement a dynamic framing structure which has
many more options than the framegen64 and framesync64 objects. See §16 for details.

6.3 Creating the Frame Generator 25

16-bit cyclic redundancy check (CRC) to validate the integrity of the received data and encoded
using the Hamming(12,8) code for error correction. (see §13 for more information on error detection
and correction capabilities in liquid). The encoded header and payload are modulated with QPSK
and encapsulated with a BPSK preamble. Finally, the resulting symbols are interpolated using a
square-root Nyquist matched filter at a rate of 2 samples per symbol. This entire process is handled
internally so that as a user the only thing you will need to do is call one function.

The framegen64 object can be generated with the framegen64 create() method which accepts
two arguments: an unsigned int and a float representing the matched filter’s length (in symbols)
and excess bandwidth factor, respectively. To begin, create a frame generator having a square-root
Nyquist filter with a delay of 3 and an excess bandwidth factor of 0.7 as

framegen64 fg = framegen64_create(3, 0.7);

As with all structures in liquid you will need to invoke the corresponding destroy() method when
you are finished with the object. Now allocate memory for the header and payload data arrays,
remembering that they have lengths 12 and 64, respectively. Raw “message” data are stored as
arrays of type unsigned char in liquid.

unsigned char header[12];

unsigned char payload[64];

Finally you will need to create a buffer for storing the frame samples. For this framing structure
you will need to allocate 1280 samples of type float complex, viz

float complex y[1280];

Initialize the header and payload arrays with whatever values you wish. All that is needed to
generate a frame is to invoke the frame generator’s execute() method:

framegen64_execute(fg, header, payload, y);

That’s it! This completely assembles the frame complete with interpolation and is ready for up-
conversion and transmission. To generate another frame simply write whatever data you wish
to the header and payload buffers, and invoke the framegen64 execute() method again as done
above. If you wish, print the first few samples of the generated frame to the screen (you will need
to separate the real and imaginary components of each sample).

for (i=0; i<30; i++)

printf("%3u : %12.8f + j*%12.8f\n", i, crealf(y[i]), cimagf(y[i]));

Your program should now look similar to this:

1 // file: doc/tutorials/framing_basic_tutorial.c

2 # include <stdio.h>

3 # include <stdlib.h>

4 # include <math.h>

5 # include <complex.h>

6 # include <liquid / liquid.h>

7

8 int main() {

9 // options

26 6 TUTORIAL: FRAMING

10 unsigned int m=3; // filter length (symbols)

11 float beta=0.7f; // filter excess bandwidth factor

12

13 // allocate memory for arrays

14 unsigned char header[12]; // data header

15 unsigned char payload[64]; // data payload

16 float complex y[1280]; // frame samples

17

18 // CREATE frame generator

19 framegen64 fg = framegen64_create(m,beta);

20 framegen64_print(fg);

21

22 // initialize header, payload

23 unsigned int i;

24 for (i=0; i<12; i++)

25 header[i] = i;

26 for (i=0; i<64; i++)

27 payload[i] = rand() & 0xff;

28

29 // EXECUTE generator and assemble the frame

30 framegen64_execute(fg, header, payload, y);

31

32 // print a few of the generated frame to the screen

33 for (i=0; i<30; i++)

34 printf("%3u : %12.8f + j*%12.8f\n", i, crealf(y[i]), cimagf(y[i]));

35

36 // DESTROY objects

37 framegen64_destroy(fg);

38

39 printf("done.\n");

40 return 0;

41 }

Compile the program as before, creating the executable “framing.” Running the program should
produce an output similar to this:

framegen64 [m=3, beta=0.70]:

ramp/up symbols : 16

phasing symbols : 64

p/n symbols : 64

header symbols : 84

payload symbols : 396

payload symbols : 396

ramp\down symbols : 16

total symbols : 640

0 : 0.00000000 + j* 0.00000000

1 : 0.00000000 + j* 0.00000000

2 : -0.00011255 + j* 0.00000000

3 : 0.00014416 + j* 0.00000000

4 : 0.00040660 + j* 0.00000000

...

25 : 0.04375378 + j* 0.00000000

6.4 Creating the Frame Synchronizer 27

26 : 0.97077769 + j* 0.00000000

27 : -0.04032370 + j* 0.00000000

28 : -1.09209442 + j* 0.00000000

29 : 0.03534408 + j* 0.00000000

done.

You might notice that the imaginary component of the samples in the beginning of the frame are
zero. This is because the preamble of the frame is BPSK which has no imaginary component at
complex baseband.

6.4 Creating the Frame Synchronizer

As stated earlier the frame synchronizer’s purpose is to detect the presence of a frame, correct
for the channel impairments, decode the data, and pass it back to the user. In our program we
will simply pass to the frame synchronizer the samples we generated in the previous section with
the frame generator. Furthermore, the hardware interface might pass the baseband samples to
the synchronizer in blocks much smaller than the length of a frame (512 samples, for instance) or
even blocks much larger than the length of a frame (4096 samples, for instance). How does the
synchronizer relay the decoded data back to the program without missing any frames? The answer
is through the use of a callback function.

What is a callback function? Put quite simply, a callback function is a function pointer (a
designated address in memory) that is invoked during a certain event. For this example the callback
function given to the framesync64 synchronizer object when the object is created and is invoked
whenever the synchronizer finds a frame. This happens irrespective of the size of the blocks passed
to the synchronizer. If you pass it a block of data samples containing four frames—several thousand
samples—then the callback will be invoked four times (assuming that channel impairments haven’t
corrupted the frame beyond the point of recovery). You can even pass the synchronizer one sample
at a time if you wish.

The framesync64 object can be generated with the framesync64 create() method which
accepts three pointers as arguments:

framesync64 framesync64_create(framesyncprops_s * _props,

framesync64_callback _callback,

void * _userdata);

props is a construct that defines the specific properties of the frame synchronizer. This includes
loop bandwidths for carrier, timing, and gain recovery, as well as squelch and equalizer control.
You may pass the value NULL to use the default parameters (recommended for now).

callback is a pointer to your callback function which will be invoked each time a frame is found
and decoded.

userdata is a void pointer that is passed to the callback function each time it is invoked. This
allows you to easily pass data from the callback function. Set to NULL if you don’t wish to
use this.

The framesync64 object has a callback function which has six arguments and looks like this:

28 6 TUTORIAL: FRAMING

int framesync64_callback(unsigned char * _header,

int _header_valid,

unsigned char * _payload,

int _payload_valid,

framesyncstats_s _stats,

void * _userdata);

The callback is typically defined to be static and is passed to the instance of framesync64 object
when it is created.

header is a pointer to the 12 bytes of decoded header data. This pointer is not static and cannot
be used after returning from the callback function. This means that it needs to be copied
locally for you to retain the data.

header valid is simply a flag to indicate if the header passed its cyclic redundancy check (“0”
means invalid, “1” means valid). If the check fails then the header data most likely has been
corrupted beyond the point that the internal error-correction code can recover; proceed with
caution!

payload is a pointer to the 64 bytes of decoded payload data. Like the header, this pointer is not
static and cannot be used after returning from the callback function. Again, this means that
it needs to be copied locally for you to retain the data.

payload valid is simply a flag to indicate if the payload passed its cyclic redundancy check (“0”
means invalid, “1” means valid). As with the header, if this flag is zero then the payload
most likely has errors in it. Some applications are error tolerant and so it is possible that
the payload data are still useful. Typically, though, the payload should be discarded and a
re-transmission request should be issued.

stats is a synchronizer statistics construct that indicates some useful PHY information to the
user. We will ignore this information in our program, but it can be quite useful for certain
applications. For more information on the framesyncstats s structure, see §16.6.

userdata Remember that void pointer you passed to the create() method? That pointer is
passed to the callback and can represent just about anything. Typically it points to another
structure and is the method by which the decoded header and payload data are returned to
the program outside of the callback.

This can seem a bit overwhelming at first, but relax! The next version of our program will only
add about 20 lines of code.

6.5 Putting it All Together

First create your callback function at the beginning of the file, just before the int main() definition;
you may give it whatever name you like (e.g. mycallback()). For now ignore all the function
inputs and just print a message to the screen that indicates that the callback has been invoked, and
return the integer zero (0). This return value for the callback function should always be zero and is
reserved for future development. Within your main() definition, create an instance of framesync64
using the framesync64 create() method, passing it a NULL for the first and third arguments (the

6.5 Putting it All Together 29

properties and userdata constructs) and the name of your callback function as the second argument.
Print the newly created synchronizer object to the screen if you like:

framesync64 fs = framesync64_create(NULL,

mycallback,

NULL);

framesync64_print(fs);

After your line that generates the frame samples (“framegen64 execute(fg, header, payload,

y);”) invoke the synchronizer’s execute() method, passing to it the frame synchronizer object
you just created (fs), the pointer to the array of frame symbols (y), and the length of the array
(1280):

framesync64_execute(fs, y, 1280);

Finally, destroy the frame synchronizer object along with the frame generator at the end of the file.
That’s it! Your program should look something like this:

1 // file: doc/tutorials/framing_intermediate_tutorial.c

2 # include <stdio.h>

3 # include <stdlib.h>

4 # include <math.h>

5 # include <complex.h>

6 # include <liquid / liquid.h>

7

8 // user-defined static callback function

9 static int mycallback(unsigned char * _header,

10 int _header_valid,

11 unsigned char * _payload,

12 int _payload_valid,

13 framesyncstats_s _stats,

14 void * _userdata)

15 {

16 printf("***** callback invoked!\n");

17 return 0;

18 }

19

20 int main() {

21 // options

22 unsigned int m=3; // filter length (symbols)

23 float beta=0.7f; // filter excess bandwidth factor

24

25 // allocate memory for arrays

26 unsigned char header[12]; // data header

27 unsigned char payload[64]; // data payload

28 float complex y[1280]; // frame samples

29

30 // create frame generator

31 framegen64 fg = framegen64_create(m,beta);

32 framegen64_print(fg);

33

34 // create frame synchronizer using default properties

30 6 TUTORIAL: FRAMING

35 framesync64 fs = framesync64_create(NULL,

36 mycallback,

37 NULL);

38 framesync64_print(fs);

39

40 // initialize header, payload

41 unsigned int i;

42 for (i=0; i<12; i++)

43 header[i] = i;

44 for (i=0; i<64; i++)

45 payload[i] = rand() & 0xff;

46

47 // EXECUTE generator and assemble the frame

48 framegen64_execute(fg, header, payload, y);

49

50 // EXECUTE synchronizer and receive the entire frame at once

51 framesync64_execute(fs, y, 1280);

52

53 // DESTROY objects

54 framegen64_destroy(fg);

55 framesync64_destroy(fs);

56

57 printf("done.\n");

58 return 0;

59 }

Compile and run your program as before and verify that your callback function was indeed invoked.
Your output should look something like this:

framegen64 [m=3, beta=0.70]:

ramp/up symbols : 16

phasing symbols : 64

...

framesync64:

agc signal min/max : -40.0 dB / 30.0dB

agc b/w open/closed : 1.00e-03 / 1.00e-05

sym b/w open/closed : 8.00e-02 / 5.00e-02

pll b/w open/closed : 2.00e-02 / 5.00e-03

samples/symbol : 2

filter length : 3

num filters (ppfb) : 32

filter excess b/w : 0.7000

squelch : disabled

auto-squelch : disabled

squelch threshold : -35.00 dB

p/n sequence len : 64

payload len : 64 bytes

***** callback invoked!

done.

6.6 Final Program 31

As you can see, the framesync64 object has a long list of modifiable properties pertaining to
synchronization; the default values provide a good initial set for a wide range of channel conditions.
Duplicate the line of your code that executes the frame synchronizer. Recompile and run your code
again. You should see the “***** callback invoked!” printed twice.

Your program has only demonstrated the basic functionality of the frame generator and syn-
chronizer under ideal conditions: no noise, carrier offsets, etc. The next section will add some
channel impairments to stress the synchronizer’s ability to decode the frame.

6.6 Final Program

In this last section we will add some channel impairments to the frame after it is generated and
before it is received. This will simulate non-ideal channel conditions. Specifically we will introduce
carrier frequency and phase offsets, channel attenuation, and noise. We will also add a frame
counter and pass it through the userdata construct in the frame synchronizer’s create() method
to be passed to the callback function when a frame is found. Finally, the program will split the
frame into pieces to emulate non-contiguous data partitioning at the receiver.

To begin, add the following parameters to the beginning of your main() definition with the
other options:

unsigned int frame_counter = 0; // userdata passed to callback

float phase_offset=0.3f; // carrier phase offset

float frequency_offset=0.02f; // carrier frequency offset

float SNRdB = 10.0f; // signal-to-noise ratio [dB]

float noise_floor = -40.0f; // noise floor [dB]

The frame counter variable is simply a number we will pass to the callback function to demonstrate
the functionality of the userdata construct. Make sure to initialize frame counter to zero. If you
completed the tutorial on phase-locked loop design you might recognize the phase offset and
frequency offset variables; these will be used in the same way to represent a carrier mismatch
between the transmitter and receiver. The channel gain and noise parameters are a bit trickier
and are set up by the next two lines. Typically the noise power is a fixed value in a receiver;
what changes is the received power based on the transmitter’s power and the gain of the channel;
however because theory dictates that the performance of a link is governed by the ratio of signal
power to noise power, SNR is a more useful than defining signal amplitude and noise variance
independently. The SNRdB and noise floor parameters fully describe the channel in this regard.
The noise standard deviation and channel gain may be derived from these values as follows:

float nstd = powf(10.0f, noise_floor/20.0f);

float gamma = powf(10.0f, (SNRdB+noise_floor)/20.0f);

Add to your program (after the framegen64 execute() line) a loop that modifies each sample of
the generated frame by introducing the channel impairments.

yi ← γyie
j(θ+iω) + σn

where yi is the frame sample at index i (y[i]), γ is the channel gain defined above (gamma), θ is
the carrier phase offset (phase offset), ω is the carrier frequency offset (frequency offset), σ
is the noise standard deviation defined above (nstd), and n is a circular Gauss random variable.

32 6 TUTORIAL: FRAMING

liquid provides the randnf() methods to generate real random numbers with a Gauss distribution;
a circular Gauss random variable can be generated from two regular Gauss random variables ni
and nq as n = (ni + jnq)/

√
2.

y[i] *= gamma;

y[i] *= cexpf(_Complex_I*(phase_offset + i*frequency_offset));

y[i] += nstd * (randnf() + _Complex_I*randnf())*0.7071;

Check the program listed below if you need help.
Now modify the program to incorporate the frame counter. First modify the piece of code

where the frame synchronizer is created: replace the last argument (initially set to NULL) with the
address of our frame counter variable. For posterity’s sake, this address will need to be type cast
to void* (a void pointer) to prevent the compiler from complaining. In your callback function you
will reverse this process: create a new variable of type unsigned int* (a pointer to an unsigned
integer) and assign it the userdata argument type cast to unsigned int*. Now de-reference this
variable and increment its value. Finally print its value near the end of the main() definition to
ensure it is being properly incremented. Again, check the program below for assistance.

The last task we will do is push one sample at a time to the frame synchronizer rather than
the entire frame block to emulate non-contiguous sample streaming. To do this, simply remove the
line that calls framesync64 execute() on the entire frame and replace it with a loop that calls
the same function but with one sample at a time.

The final program is listed below, and a copy of the source is located in the doc/tutorials/

subdirectory.

1 // file: doc/tutorials/framing_tutorial.c

2 # include <stdio.h>

3 # include <stdlib.h>

4 # include <math.h>

5 # include <complex.h>

6 # include <liquid / liquid.h>

7

8 // user-defined static callback function

9 static int mycallback(unsigned char * _header,

10 int _header_valid,

11 unsigned char * _payload,

12 int _payload_valid,

13 framesyncstats_s _stats,

14 void * _userdata)

15 {

16 printf("***** callback invoked!\n");

17 printf(" header (%s)\n", _header_valid ? "valid" : "INVALID");

18 printf(" payload (%s)\n", _payload_valid ? "valid" : "INVALID");

19

20 // type-cast, de-reference, and increment frame counter

21 unsigned int * counter = (unsigned int *) _userdata;

22 (*counter)++;

23

24 return 0;

25 }

26

6.6 Final Program 33

27 int main() {

28 // options

29 unsigned int m=3; // filter length (symbols)

30 float beta=0.7f; // filter excess bandwidth factor

31 unsigned int frame_counter = 0; // userdata passed to callback

32 float phase_offset=0.3f; // carrier phase offset

33 float frequency_offset=0.02f; // carrier frequency offset

34 float SNRdB = 10.0f; // signal-to-noise ratio [dB]

35 float noise_floor = -40.0f; // noise floor [dB]

36

37 // allocate memory for arrays

38 unsigned char header[12]; // data header

39 unsigned char payload[64]; // data payload

40 float complex y[1280]; // frame samples

41

42 // create frame generator

43 framegen64 fg = framegen64_create(m,beta);

44 framegen64_print(fg);

45

46 // create frame synchronizer using default properties

47 framesync64 fs = framesync64_create(NULL,

48 mycallback,

49 (void*)&frame_counter);

50 framesync64_print(fs);

51

52 // initialize header, payload

53 unsigned int i;

54 for (i=0; i<12; i++)

55 header[i] = i;

56 for (i=0; i<64; i++)

57 payload[i] = rand() & 0xff;

58

59 // EXECUTE generator and assemble the frame

60 framegen64_execute(fg, header, payload, y);

61

62 // add channel impairments (attenuation, carrier offset, noise)

63 float nstd = powf(10.0f, noise_floor/20.0f); // noise std. dev.

64 float gamma = powf(10.0f, (SNRdB+noise_floor)/20.0f);// channel gain

65 for (i=0; i<1280; i++) {

66 y[i] *= gamma;

67 y[i] *= cexpf(_Complex_I*(phase_offset + i*frequency_offset));

68 y[i] += nstd * (randnf() + _Complex_I*randnf())*M_SQRT1_2;

69 }

70

71 // EXECUTE synchronizer and receive the frame one sample at a time

72 for (i=0; i<1280; i++)

73 framesync64_execute(fs, &y[i], 1);

74

75 // DESTROY objects

76 framegen64_destroy(fg);

77 framesync64_destroy(fs);

34 6 TUTORIAL: FRAMING

78

79 printf("received %u frames\n", frame_counter);

80 printf("done.\n");

81 return 0;

82 }

Compile and run the program as before. The output of your program should look something like
this:

framegen64 [m=3, beta=0.70]:

ramp/up symbols : 16

phasing symbols : 64

...

framesync64:

agc signal min/max : -40.0 dB / 30.0dB

agc b/w open/closed : 1.00e-03 / 1.00e-05

...

***** callback invoked!

header (valid)

payload (valid)

received 1 frames

done.

Play around with the initial options, particularly those pertaining to the channel impairments. Un-
der what circumstances does the synchronizer miss the frame? For example, what is the minimum
SNR level that is required to reliably receive a frame? the maximum carrier frequency offset?

The “random” noise generated by the program will be seeded to the same value every time
the program is run. A new seed can be initialized on the system’s time (e.g. time of day) to
help generate new instances of random numbers each time the program is run. To do so, include
the <time.h> header to the top of your file and add the following line to the beginning of your
program’s main() definition:

srand(time(NULL));

This will ensure a unique simulation is run each time the program is executed. For a more detailed
program, see examples/framesync64 example.c in the main liquid directory. §16 describes liquid’s
framing module in detail.

While the framing structure described in this section provides a simple interface for transmit-
ting and receiving data over a channel, its functionality is limited and isn’t particularly spectrally
efficient. liquid provides a more robust framing structure which allows the use of any linear modu-
lation scheme, two layers of forward error-correction coding, and a variable preamble and payload
length. These properties can be reconfigured for each frame to allow fast adaptation to quickly
varying channel conditions. Furthermore, the frame synchronizer on the receiver automatically
reconfigures itself for each frame it detects to allow as simple an interface possible. The frame
generator and synchronizer objects are denoted flexframegen and flexframesync, respectively,
and are described in §16. A detailed example program examples/flexframesync example.c is
available in the main liquid directory.

35

7 Tutorial: OFDM Framing

In the previous tutorials we have created only the basic building blocks for wireless communication.
We have also used the basic framegen64 and framesync64 objects to transmit and receive simple
framing data. This tutorial extends the work on the previous tutorials by introducing a flexible
framing structure that uses a parallel data transmission scheme that permits arbitrary parametriza-
tion (modulation, forward error-correction, payload length, etc.) with minimal reconfiguration at
the receiver.

7.1 Problem Statement

The framing tutorial (§6) loaded data serially onto a single carrier. Another option is to load data
onto many carriers in parallel; however it is desirable to do so such that bandwidth isn’t wasted. By
allowing the “subcarriers” to overlap in frequency, the system approaches the theoretical maximum
capacity of the channel. Several multiplexing schemes are possible, but by far the most common
is generically known as orthogonal frequency divisional multiplexing (OFDM) which uses a square
temporal pulse shaping filter for each subcarrier, separated in frequency by the inverse of the
symbol rate. This conveniently allows data to be loaded into the input of an inverse discrete Fourier
transform (DFT) at the transmitter and (once time and carrier synchronized) de-multiplexed with a
regular DFT at the receiver. For computational efficiency the DFT may be implemented with a fast
Fourier transform (FFT) which is mathematically equivalent but considerably faster. Furthermore,
because of the cyclic nature of the DFT a certain portion (usually on the order of 10%) of the tail of
the generated symbol may be copied to its head before transmitting; this is known as the cyclic prefix
which can eliminate inter-symbol interference in the presence of multi-path channel environments.
Carrier frequency and symbol timing offsets can be tracked and corrected by inserting known pilot
subcarriers in the signal at the transmitter; because the receiver knows the pilot symbols it can
make an accurate estimate of the channel conditions for each OFDM symbol. As an example, the
well-known Wi-Fi 802.11a standard uses OFDM with 64 subcarriers (52 for data, 4 pilots, and 8
disabled for guard bands) and a 16-sample cyclic prefix.

In this tutorial we will create a simple pair of OFDM framing objects; the generator (ofdmflexframegen),
like the framegen64 object, has a simple interface that accepts raw data in, frame samples out. The
synchronizer (ofdmflexframesync), like the framesync64 object, accepts samples and invokes a
callback function for each frame that it detects, compensating for sample timing and carrier offsets
and multi-path channels. The framing objects can be created with nearly any even-length trans-
form (number of subcarriers), cyclic prefix, and arbitrary null/pilot/data subcarrier allocation.5

Furthermore, the OFDM frame generator permits many different parameters (e.g. modulation/-
coding schemes, payload length) which are detected automatically at the receiver without any work
on your part.

7.2 Setting up the Environment

As with the other tutorials I assume that you are using gcc to compile your programs and link
to appropriate libraries. Create a new file ofdmflexframe.c and include the headers stdio.h,

5While nearly any arbitrary configuration is supported, the performance of synchronization is greatly dependent
upon the choice of the number, type, and allocation of subcarriers.

36 7 TUTORIAL: OFDM FRAMING

stdlib.h, math.h, complex.h, and liquid/liquid.h. Add the int main() definition so that
your program looks like this:

1 // file: doc/tutorials/ofdmflexframe_init_tutorial.c

2 # include <stdio.h>

3 # include <stdlib.h>

4 # include <math.h>

5 # include <complex.h>

6 # include <liquid / liquid.h>

7

8 int main() {

9 printf("done.\n");

10 return 0;

11 }

Compile and link the program using gcc:

$ gcc -Wall -o ofdmflexframe -lm -lc -lliquid ofdmflexframe.c

The flag “-Wall” tells the compiler to print all warnings (unused and uninitialized variables, etc.),
“-o ofdmflexframe” specifies the name of the output program is “ofdmflexframe”, and “-lm -lc

-lliquid” tells the linker to link the binary against the math, standard C, and liquid DSP libraries,
respectively. Notice that the above command invokes both the compiler and the linker collectively.
If the compiler did not give any errors, the output executable ofdmflexframe is created which can
be run as

$./ofdmflexframe

and should simply print “done.” to the screen. You are now ready to add functionality to your
program.

7.3 OFDM Framing Structure

In this tutorial we will be using the ofdmflexframegen and ofdmflexframesync objects in liquid
which realize the framing generator (transmitter) and synchronizer (receiver). The OFDM framing
structure is briefly described here (for a more detailed description, see §16.7). The ofdmflexframe

generator and synchronizer objects together realize a simple framing structure for loading data onto
a reconfigurable OFDM physical layer. The generator encapsulates an 8-byte user-defined header
and a variable-length buffer of uncoded payload data and fully encodes a frame of OFDM symbols
ready for transmission. The user may define many physical-layer parameters of the transmission,
including the number of subcarriers and their allocation (null/pilot/data), cyclic prefix length,
forward error-correction coding, modulation scheme, and others. The synchronizer requires the
same number of subcarriers, cyclic prefix, and subcarrier allocation as the transmitter, but can
automatically determine the payload length, modulation scheme, and forward error-correction of
the receiver. Furthermore, the receiver can compensate for carrier phase/frequency and timing
offsets as well as multi-path fading and noisy channels. The received data are returned via a callback
function which includes the modulation and error-correction schemes used as well as certain receiver
statistics such as the received signal strength (§8), and error vector magnitude (§19.2.11).

7.4 Creating the Frame Generator 37

7.4 Creating the Frame Generator

The ofdmflexframegen object can be generated with the ofdmflexframegen create(M,c,p,props)

method which accepts four arguments:

• M is an unsigned int representing the total number of subcarriers

• c is an unsigned int representing the length of the cyclic prefix

• p is an M -element array of unsigned char which gives the subcarrier allocation (e.g. which
subcarriers are nulled/disabled, which are pilots, and which carry data). Setting to NULL tells
the ofdmflexframegen object to use the default subcarrier allocation (see §16.7.2 for details);

• props is a special structure called ofdmflexframegenprops s which gives some basic prop-
erties including the inner/outer forward error-correction scheme(s) to use (fec0, fec1), and
the modulation scheme (mod scheme) and depth (mod depth). The properties object can be
initialized to its default by using ofdmflexframegenprops init default().

To begin, create a frame generator having 64 subcarriers with cyclic prefix of 16 samples, the default
subcarrier allocation, and default properties as

// create frame generator with default parameters

ofdmflexframegen fg = ofdmflexframegen_create(64, 16, NULL, NULL);

As with all structures in liquid you will need to invoke the corresponding destroy() method when
you are finished with the object.

Now allocate memory for the header (8 bytes) and payload (120 bytes) data arrays. Raw
“message” data are stored as arrays of type unsigned char in liquid.

unsigned char header[8];

unsigned char payload[120];

Initialize the header and payload arrays with whatever values you wish. Finally you will need
to create a buffer for storing the frame samples. Unlike the framegen64 object in the previous
tutorial which generates the entire frame at once, the ofdmflexframegen object generates each
symbol independently. For this framing structure you will need to allocate M + c samples of type
float complex (for this example M + c = 64 + 16 = 80), viz.

float complex buffer[80];

Generating the frame consists of two steps: assemble and write. Assembling the frame simply
involves invoking the ofdmflexframegen assemble(fg,header,payload,payload len) method
which accepts the frame generator object as well as the header and payload arrays we initialized
earlier. Internally, the object encodes and modulates the frame, but does not write the OFDM sym-
bols yet. To write the OFDM time-series symbols, invoke the ofdmflexframegen writesymbol()

method. This method accepts three arguments: the frame generator object, the output buffer we
created earlier, and the pointer to an integer to indicate the number of samples that have been
written to the buffer. The last argument is necessary because not all of the symbols in the frame
are the same size (the first several symbols in the preamble do not have a cyclic prefix). Invoking
the ofdmflexframegen writesymbol() method repeatedly generates each symbol of the frame and
returns a flag indicating if the last symbol in the frame has been written.

Add the instructions to assemble and write a frame one symbol at a time to your source code:

38 7 TUTORIAL: OFDM FRAMING

// assemble the frame and print

ofdmflexframegen_assemble(fg, header, payload, payload_len);

ofdmflexframegen_print(fg);

// generate the frame one OFDM symbol at a time

int last_symbol=0; // flag indicating if this is the last symbol

unsigned int num_written; // number of samples written to the buffer

while (!last_symbol) {

// write samples to the buffer

last_symbol = ofdmflexframegen_writesymbol(fg, buffer, &num_written);

// print status

printf("ofdmflexframegen wrote %3u samples %s\n",

num_written,

last_symbol ? "(last symbol)" : "");

}

That’s it! This completely assembles the frame complete with error-correction coding, pilot sub-
carriers, and the preamble necessary for synchronization. You may generate another frame simply
by initializing the data in your header and payload arrays, assembling the frame, and then writing
the symbols to the buffer. Keep in mind, however, that the buffer is overwritten each time you
invoke ofdmflexframegen writesymbol(), so you will need to do something with the data with
each iteration of the loop. Your program should now look similar to this:

1 // file: doc/tutorials/ofdmflexframe_basic_tutorial.c

2 # include <stdio.h>

3 # include <stdlib.h>

4 # include <math.h>

5 # include <complex.h>

6 # include <liquid / liquid.h>

7

8 int main() {

9 // options

10 unsigned int M = 64; // number of subcarriers

11 unsigned int cp_len = 16; // cyclic prefix length

12 unsigned int payload_len = 120; // length of payload (bytes)

13

14 // allocate memory for header, payload, sample buffer

15 float complex buffer[M + cp_len]; // time-domain buffer

16 unsigned char header[8]; // header

17 unsigned char payload[payload_len]; // payload

18

19 // create frame generator object with default properties

20 ofdmflexframegen fg = ofdmflexframegen_create(M, cp_len, NULL, NULL);

21

22 unsigned int i;

23

24 // initialize header/payload and assemble frame

25 for (i=0; i<8; i++) header[i] = i & 0xff;

26 for (i=0; i<payload_len; i++) payload[i] = rand() & 0xff;

27 ofdmflexframegen_assemble(fg, header, payload, payload_len);

7.4 Creating the Frame Generator 39

28 ofdmflexframegen_print(fg);

29

30 // generate frame one OFDM symbol at a time

31 int last_symbol=0;

32 unsigned int num_written;

33 while (!last_symbol) {

34 // generate symbol (write samples to buffer)

35 last_symbol = ofdmflexframegen_writesymbol(fg, buffer, &num_written);

36

37 // print status

38 printf("ofdmflexframegen wrote %3u samples %s\n",

39 num_written,

40 last_symbol ? "(last symbol)" : "");

41 }

42

43 // destroy objects and return

44 ofdmflexframegen_destroy(fg);

45 printf("done.\n");

46 return 0;

47 }

Running the program should produce an output similar to this:

ofdmflexframegen:

num subcarriers : 64

* NULL : 14

* pilot : 6

* data : 44

cyclic prefix len : 16

properties:

* mod scheme : quaternary phase-shift keying (2 b/s)

* fec (inner) : none

* fec (outer) : none

* CRC scheme : CRC (16-bit)

payload:

* decoded bytes : 120

* encoded bytes : 122

* modulated syms : 488

total OFDM symbols : 23

* S0 symbols : 3 @ 64

* S1 symbols : 1 @ 80

* header symbols : 7 @ 80

* payload symbols : 12 @ 80

spectral efficiency : 0.5357 b/s/Hz

ofdmflexframegen wrote 64 samples

ofdmflexframegen wrote 64 samples

ofdmflexframegen wrote 64 samples

ofdmflexframegen wrote 80 samples

ofdmflexframegen wrote 80 samples

...

ofdmflexframegen wrote 80 samples (last symbol)

done.

40 7 TUTORIAL: OFDM FRAMING

Notice that the ofdmflexframegen print() method gives a lot of information, including the num-
ber of null, pilot, and data subcarriers, the number of modulated symbols, the number of OFDM
symbols, and the resulting spectral efficiency. Furthermore, notice that the first three symbols
have only 64 samples while the remaining have 80; these first three symbols are actually part of
the preamble to help the synchronizer detect the presence of a frame and estimate symbol timing
and carrier frequency offsets.

7.5 Creating the Frame Synchronizer

The OFDM frame synchronizer’s purpose is to detect the presence of a frame, correct for channel
impairments (such as a carrier frequency offset), decode the data (correct for errors in the presence
of noise), and pass the resulting data back to the user. In our program we will pass to the frame
synchronizer samples in the buffer created by the generator, without adding noise, carrier frequency
offsets, or other channel impairments. The ofdmflexframesync object can be generated with the
ofdmflexframesync create(M,c,p,callback,userdata) method which accepts five arguments:

• M is an unsigned int representing the total number of subcarriers

• c is an unsigned int representing the length of the cyclic prefix

• p is an M -element array of unsigned char which gives the subcarrier allocation (see §7.4)

• callback is a pointer to your callback function which will be invoked each time a frame is
found and decoded.

• userdata is a void pointer that is passed to the callback function each time it is invoked.
This allows you to easily pass data from the callback function. Set to NULL if you don’t wish
to use this.

Notice that the first three arguments are the same as in the ofdmflexframegen create() method;
the values of these parameters at the synchronizer need to match those at the transmitter in order
for the synchronizer to operate properly. When the synchronizer does find a frame, it attempts to
decode the header and payload and invoke a user-defined callback function.6 The callback function
for the ofdmflexframesync object has seven arguments and looks like this:

int ofdmflexframesync_callback(unsigned char * _header,

int _header_valid,

unsigned char * _payload,

unsigned int _payload_len,

int _payload_valid,

framesyncstats_s _stats,

void * _userdata);

The callback is typically defined to be static and is passed to the instance of ofdmflexframesync
object when it is created. Here is a brief description of the callback function’s arguments:

header is a pointer to the 8 bytes of decoded header data (remember that header[8] array you
created with the ofdmflexframegen object?). This pointer is not static and cannot be used
after returning from the callback function. This means that it needs to be copied locally
before returning in order for you to retain the data.

6a basic description of how callback functions work is given in the basic framing tutorial in §6.4.

7.6 Putting it All Together 41

header valid is simply a flag to indicate if the header passed its cyclic redundancy check (“0”
means invalid, “1” means valid). If the check fails then the header data have been corrupted
beyond the point that internal error correction can recover; in this situation the payload
cannot be recovered.

payload is a pointer to the decoded payload data. Like the header, this pointer is not static
and cannot be used after returning from the callback function. Again, this means that it
needs to be copied locally for you to retain the data. When the header cannot be decoded
(header valid == 0) this value is set to NULL.

payload len is the length (number of bytes) of the payload array. When the header cannot be
decoded (header valid == 0) this value is set to 0.

payload valid is simply a flag to indicate if the payload passed its cyclic redundancy check (“0”
means invalid, “1” means valid). As with the header, if this flag is zero then the payload
almost certainly contains errors.

stats is a synchronizer statistics construct that indicates some useful PHY information to the
user (such as RSSI and EVM). We will ignore this information in our program, but it can
be quite useful for certain applications. For more information on the framesyncstats s

structure, see §16.6.

userdata is a void pointer given to the ofdmflexframesync create() method that is passed to
this callback function and can represent anything you want it to. Typically this pointer is a
vehicle for getting the header and payload data (as well as any other pertinent information)
back to your main program.

This can seem a bit overwhelming at first, but relax! The next version of our program will only
add about 20 lines of code to our previous program.

7.6 Putting it All Together

First create your callback function at the beginning of the file, just before the int main() definition;
you may give it whatever name you like (e.g. mycallback()). For now ignore all the function inputs
and just print a message to the screen that indicates that the callback has been invoked, and return
the integer zero (0). This return value for the callback function should always be zero and is reserved
for future development. Within your main() definition, create an instance of ofdmflexframesync
using the ofdmflexframesync create() method, passing it 64 for the number of subcarriers, 16
for the cyclic prefix length, NULL for the subcarrier allocation (default), mycallback, and NULL for
the userdata. Print the newly created synchronizer object to the screen if you like:

ofdmflexframesync fs = ofdmflexframesync_create(64, 16, NULL, mycallback, NULL);

Within the while loop that writes the frame symbols to the buffer, invoke the synchronizer’s
execute() method, passing to it the frame synchronizer object you just created (fs), the buffer of
frame symbols, and the number of samples written to the buffer (num written):

ofdmflexframesync_execute(fs, buffer, num_written);

42 7 TUTORIAL: OFDM FRAMING

Finally, destroy the frame synchronizer object along with the frame generator at the end of the file.
That’s it! Your program should look something like this:

1 // file: doc/tutorials/ofdmflexframe_intermediate_tutorial.c

2 # include <stdio.h>

3 # include <stdlib.h>

4 # include <math.h>

5 # include <complex.h>

6 # include <liquid / liquid.h>

7

8 // callback function

9 int mycallback(unsigned char * _header,

10 int _header_valid,

11 unsigned char * _payload,

12 unsigned int _payload_len,

13 int _payload_valid,

14 framesyncstats_s _stats,

15 void * _userdata)

16 {

17 printf("***** callback invoked!\n");

18 printf(" header (%s)\n", _header_valid ? "valid" : "INVALID");

19 printf(" payload (%s)\n", _payload_valid ? "valid" : "INVALID");

20 return 0;

21 }

22

23 int main() {

24 // options

25 unsigned int M = 64; // number of subcarriers

26 unsigned int cp_len = 16; // cyclic prefix length

27 unsigned int payload_len = 120; // length of payload (bytes)

28

29 // allocate memory for header, payload, sample buffer

30 float complex buffer[M + cp_len]; // time-domain buffer

31 unsigned char header[8]; // header

32 unsigned char payload[payload_len]; // payload

33

34 // create frame generator object with default properties

35 ofdmflexframegen fg = ofdmflexframegen_create(M, cp_len, NULL, NULL);

36

37 // create frame synchronizer object

38 ofdmflexframesync fs = ofdmflexframesync_create(M, cp_len, NULL, mycallback, NULL);

39

40 unsigned int i;

41

42 // initialize header/payload and assemble frame

43 for (i=0; i<8; i++) header[i] = i & 0xff;

44 for (i=0; i<payload_len; i++) payload[i] = rand() & 0xff;

45 ofdmflexframegen_assemble(fg, header, payload, payload_len);

46

47 ofdmflexframegen_print(fg);

48 ofdmflexframesync_print(fs);

7.7 Final Program 43

49

50 // generate frame and synchronize

51 int last_symbol=0;

52 unsigned int num_written;

53 while (!last_symbol) {

54 // generate symbol (write samples to buffer)

55 last_symbol = ofdmflexframegen_writesymbol(fg, buffer, &num_written);

56

57 // receive symbol (read samples from buffer)

58 ofdmflexframesync_execute(fs, buffer, num_written);

59 }

60

61 // destroy objects and return

62 ofdmflexframegen_destroy(fg);

63 ofdmflexframesync_destroy(fs);

64 printf("done.\n");

65 return 0;

66 }

Compile and run your program as before and verify that your callback function was indeed invoked.
Your output should look something like this:

ofdmflexframegen:

...

ofdmflexframesync:

num subcarriers : 64

* NULL : 14

* pilot : 6

* data : 44

cyclic prefix len : 16

***** callback invoked!

header (valid)

payload (valid)

done.

Your program has demonstrated the basic functionality of the OFDM frame generator and synchro-
nizer. The previous tutorial on framing (§6) added a carrier offset and noise to the signal before
synchronizing; these channel impairments are addressed in the next section.

7.7 Final Program

In this last portion of the OFDM framing tutorial, we will modify our program to change the
modulation and coding schemes from their default values as well as add channel impairments
(noise and carrier frequency offset). Information on different modulation schemes can be found in
§19.2; information on different forward error-correction schemes and validity checks cane be found
in §13. To begin, add the following parameters to the beginning of your main() definition with the
other options:

modulation_scheme ms = LIQUID_MODEM_PSK8; // payload modulation scheme

fec_scheme fec0 = LIQUID_FEC_NONE; // inner FEC scheme

fec_scheme fec1 = LIQUID_FEC_HAMMING128; // outer FEC scheme

44 7 TUTORIAL: OFDM FRAMING

crc_scheme check = LIQUID_CRC_32; // data validity check

float dphi = 0.001f; // carrier frequency offset

float SNRdB = 20.0f; // signal-to-noise ratio [dB]

The first five options define which modulation, coding, and error-checking schemes should be
used in the framing structure. The dphi and SNRdB are the carrier frequency offset (∆φ) and
signal-to-noise ratio (in decibels), respectively. To change the framing generator properties, cre-
ate an instance of the ofdmflexframegenprops s structure, query the current properties list with
ofdmflexframegen getprops(), override with the properties of your choice, and then reconfigure
the frame generator with ofdmflexframegen setprops(), viz.

// re-configure frame generator with different properties

ofdmflexframegenprops_s fgprops;

ofdmflexframegen_getprops(fg, &fgprops);

fgprops.check = check;

fgprops.fec0 = fec0;

fgprops.fec1 = fec1;

fgprops.mod_scheme = ms;

ofdmflexframegen_setprops(fg, &fgprops);

Add this code somewhere after you create the frame generator, but before you assemble the frame.
Adding channel impairments can be a little tricky. We have specified the signal-to-noise ratio

in decibels (dB) but need to compute the equivalent noise standard deviation. Assuming that the
signal power is unity, the noise standard deviation is just σn = 10−SNRdB/20. The carrier frequency
offset can by synthesized with a phase variable that increases by a constant for each sample, k.
That is, φk = φk−1 + ∆φ. Each sample in the buffer can be multiplied by the resulting complex
sinusoid generated by this phase, with noise added to the result:

buffer[k]← buffer[k]ejφk + σn(ni + jnq)

Initialize the variables for noise standard deviation and carrier phase before the while loop as

float nstd = powf(10.0f, -SNRdB/20.0f); // noise standard deviation

float phi = 0.0f; // channel phase

Create an inner loop (inside the while loop) that modifies the contents of the buffer after the frame
generator, but before the frame synchronizer:

// channel impairments

for (i=0; i<num_written; i++) {

buffer[i] *= cexpf(_Complex_I*phi); // apply carrier offset

phi += dphi; // update carrier phase

cawgn(&buffer[i], nstd); // add noise

}

Your program should look something like this:

1 // file: doc/tutorials/ofdmflexframe_advanced_tutorial.c

2 # include <stdio.h>

3 # include <stdlib.h>

4 # include <math.h>

7.7 Final Program 45

5 # include <complex.h>

6 # include <liquid / liquid.h>

7

8 // callback function

9 int mycallback(unsigned char * _header,

10 int _header_valid,

11 unsigned char * _payload,

12 unsigned int _payload_len,

13 int _payload_valid,

14 framesyncstats_s _stats,

15 void * _userdata)

16 {

17 printf("***** callback invoked!\n");

18 printf(" header (%s)\n", _header_valid ? "valid" : "INVALID");

19 printf(" payload (%s)\n", _payload_valid ? "valid" : "INVALID");

20 return 0;

21 }

22

23 int main() {

24 // options

25 unsigned int M = 64; // number of subcarriers

26 unsigned int cp_len = 16; // cyclic prefix length

27 unsigned int payload_len = 120; // length of payload (bytes)

28 modulation_scheme ms = LIQUID_MODEM_PSK8; // payload modulation scheme

29 fec_scheme fec0 = LIQUID_FEC_NONE; // inner FEC scheme

30 fec_scheme fec1 = LIQUID_FEC_HAMMING128; // outer FEC scheme

31 crc_scheme check = LIQUID_CRC_32; // data validity check

32 float dphi = 0.001f; // carrier frequency offset

33 float SNRdB = 20.0f; // signal-to-noise ratio [dB]

34

35 // allocate memory for header, payload, sample buffer

36 float complex buffer[M + cp_len]; // time-domain buffer

37 unsigned char header[8]; // header

38 unsigned char payload[payload_len]; // payload

39

40 // create frame generator with default properties

41 ofdmflexframegen fg = ofdmflexframegen_create(M, cp_len, NULL, NULL);

42

43 // create frame synchronizer

44 ofdmflexframesync fs = ofdmflexframesync_create(M, cp_len, NULL, mycallback, NULL);

45

46 unsigned int i;

47

48 // re-configure frame generator with different properties

49 ofdmflexframegenprops_s fgprops;

50 ofdmflexframegen_getprops(fg,&fgprops); // query the current properties

51 fgprops.check = check; // set the error-detection scheme

52 fgprops.fec0 = fec0; // set the inner FEC scheme

53 fgprops.fec1 = fec1; // set the outer FEC scheme

54 fgprops.mod_scheme = ms; // set the modulation scheme

55 ofdmflexframegen_setprops(fg,&fgprops); // reconfigure the frame generator

46 7 TUTORIAL: OFDM FRAMING

56

57 // initialize header/payload and assemble frame

58 for (i=0; i<8; i++) header[i] = i & 0xff;

59 for (i=0; i<payload_len; i++) payload[i] = rand() & 0xff;

60 ofdmflexframegen_assemble(fg, header, payload, payload_len);

61 ofdmflexframegen_print(fg);

62

63 // channel parameters

64 float nstd = powf(10.0f, -SNRdB/20.0f); // noise standard deviation

65 float phi = 0.0f; // channel phase

66

67 // generate frame and synchronize

68 int last_symbol=0;

69 unsigned int num_written;

70 while (!last_symbol) {

71 // generate symbol (write samples to buffer)

72 last_symbol = ofdmflexframegen_writesymbol(fg, buffer, &num_written);

73

74 // channel impairments

75 for (i=0; i<num_written; i++) {

76 buffer[i] *= cexpf(_Complex_I*phi); // apply carrier offset

77 phi += dphi; // update carrier phase

78 cawgn(&buffer[i], nstd); // add noise

79 }

80

81 // receive symbol (read samples from buffer)

82 ofdmflexframesync_execute(fs, buffer, num_written);

83 }

84

85 // destroy objects and return

86 ofdmflexframegen_destroy(fg);

87 ofdmflexframesync_destroy(fs);

88 printf("done.\n");

89 return 0;

90 }

Run this program to verify that the frame is indeed detected and the payload is received free of
errors. For a more detailed program, see examples/ofdmflexframesync example.c in the main
liquid directory; this example also demonstrates setting different properties of the frame, but permits
options to be passed to the program from the command line, rather than requiring the program to be
re-compiled. Play around with various combinations of options in the program, such as increasing
the number of subcarriers, modifying the modulation scheme, decreasing the signal-to-noise ratio,
and applying different forward error-correction schemes.

1. What happens to the spectral efficiency of the frame when you increase the payload from 120
bytes to 400?7 when you decrease the cyclic prefix from 16 samples to 4?8 when you increase

7A: the spectral efficiency increases from 0.5357 to 0.8439 because the preamble accounts for less of frame (less
overhead)

8A: the spectral efficiency increases from 0.5357 to 0.61686 because fewer samples are used for each OFDM symbol
(less overhead)

7.7 Final Program 47

the number of subcarriers from 64 to 256?9

2. What happens when the frame generator is created with 64 subcarriers and the synchronizer
is created with only 62?10 when the cyclic prefix lengths don’t match?11

3. What happens when you decrease the SNR from 20 dB to 10 dB?12 when you decrease the
SNR to 0 dB?13 when you decrease the SNR to -10 dB?14

4. What happens when you increase the carrier frequency offset from 0.001 to 0.05?15

9A: the spectral efficiency decreases from 0.5357 to 0.400 because the preamble accounts for more of the frame
(increased overhead).

10A: the synchronizer cannot detect frame because the subcarriers don’t match (different pilot locations, etc.
11A: the synchronizer cannot decode header because of symbol timing mis-alignment.
12A: the payload will probably be invalid because of too many errors.
13A: the frame header will probably be invalid because of too many errors.
14A: the frame synchronizer will probably miss the frame entirely because of too much noise.
15A: the frame isn’t detected because the carrier offset is too large for the synchronizer to correct. Try decreasing

the number of subcarriers from 64 to 32 and see what happens.

48

Part III

Modules

Source code for liquid is organized into modules which are, for the most part, self-contained ele-
ments. The following sections describe these modules in detail with some basic theory behind their
operation, functional interface description, and example code.

49

input energy

o
u
tp

u
t
e
n
e
rg
y

target energy, ē

e0 e1

Figure 1: Ideal AGC transfer function of input to output signal energy.

8 agc (automatic gain control)

Normalizing the level of an incoming signal is a critical step in many wireless communications
systems and is necessary before further processing can happen in the receiver. This is particularly
necessary in digital modulation schemes which encode information in the signal amplitude (e.g.
see MOD QAM in §19.2). Furthermore, loop filters for tracking carrier and symbol timing are highly
sensitive to signal levels and require some degree of amplitude normalization. As such automatic
gain control plays a crucial role in SDR. The ideal AGC has a transfer function as in Figure 1.
When the input signal level is low, the AGC is disabled and the output is a linear function of the
input. When the input level reaches a lower threshold, e0, the AGC becomes active and the output
level is maintained at the target (unity) until the input reaches its upper limit, e1. The AGC is
disabled at this point, and the output level is again a linear function of the input.

liquid implements automatic gain controlling with the agc xxxt family of objects. The goal is
to estimate the gain required to force a signal to have a unity target energy. Operating one sample
at a time, the agc object makes an estimate ê of the signal energy and updates the internal gain g,
applying it to the input to produce an output with the target energy. The gain estimate is updated
by way of an open loop filter whose bandwidth determines the update rate of the AGC.

8.1 Theory

Given an input signal x = {x0, x1, x2, . . . , xN−1}, its energy is computed as its L2 norm over the
entire sequence, viz

E{‖x‖} =

[
N−1∑
k=0

‖x2
k‖
]1/2

(8)

For received communications signals, however, the goal is to adjust to the gain of the receiver
relative to the slowly-varying amplitude of the incoming receiver due to shadowing, path loss, etc.
Therefore it is necessary to make an estimate of the signal energy over a short period of time. This
is accomplished by computing the average of only the previous M samples of |x|2; liquid uses an
internal buffer size of M = 16 samples. Now that the short-time signal energy has been estimated,
all that remains is to adjust the gain of the receiver accordingly. liquid implements an open-loop

50 8 AGC (AUTOMATIC GAIN CONTROL)

gain control by adjusting the instantaneous gain value to match the estimated signal energy to
drive the output level to unity. The loop filter for the gain is a first-order recursive low-pass filter
with the transfer function defined as

Hg(z) =
α

1− (1− α)z−1
(9)

where α ,
√
ω. In order to achieve a unity target energy, the instantaneous ideal gain is therefore

the inverse of the estimated signal level,

ĝk =
√

1/êk (10)

Rather than applying the gain directly to the input signal it is first filtered as

gk = αĝk + (1− α)gk−1 (11)

where again α ,
√
ω is the smoothing factor of the gain estimate and controls the attack and release

time the agc object has on an input signal. Because α is typically small, the updated internal gain
gk retains most of its previous gain value gk−1 but adds a small portion of its new estimate ĝk.

8.2 Locking

The agc object permits the gain to be locked when, for example, the header of a frame has been
received. This is useful for effectively switching the AGC on and off during short, burst-mode
frame transmissions, particularly when the signal has a high-order digital amplitude-modulation
(e.g. 64-QAM) and fluctuations in the AGC could potentially result in symbol errors. When the
agc object is locked, the internal gain control is not updated, and the internal gain at the time
of locking is applied directly to the output signal, forcing gk = gk−1. Locking and unlocking is
accomplished with the agc crcf lock() and agc crcf unlock() methods, respectively.

8.3 Squelch

The agc object contains internal squelch control to allow the receiver the ability to disable signal
processing when the signal level is too low. In traditional radio design, the squelch circuit suppressed
the output of a receiver when the signal strength would fall below a certain level, primarily used
to prevent audio static due to noise when no other operators were transmitting. Having said that,
the squelch control in liquid is actually somewhat of a misnomer as it doesn’t actually control
the AGC, but rather just monitors the dynamics of the signal level and returns its status to the
controlling unit. The squelch control follows six states—enabled, rising edge trigger, signal high,
falling edge trigger, signal low, and timeout—as depicted in Figure 2 and Table 1. These states
give the user flexibility in programming networks where frames are transmitted in short bursts and
the receiver needs to synchronize quickly. The status of the squelch control is retrieved via the
agc crcf squelch get status() method.

The typical control cycle for the AGC squelch is depicted in Figure 2. Initially, squelch is
enabled (code 0) as the signal has been low for quite some time. When the beginning of a frame
is received, the RSSI increases beyond the squelch threshold (code 1). All subsequent samples
above this threshold return a “signal high” status (code 2). Once the signal level falls below the
threshold, the squelch returns a “falling edge trigger” status (code 3). All subsequent samples

8.3 Squelch 51

time

si
gn

a
l

st
re

n
gt

h

squelch threshold

noise floor

timeout

code: 0 0 · · · 0 0 1 2 2 2 · · · · · · 2 2 2 3 4 4 · · · 4 4 5 0 0 0 · · ·

Figure 2: agc crcf squelch

below the threshold until timing out return a “signal low” status (code 4). When the signal has
been low for a sufficient period of time (defined by the user), the squelch will return a “timeout”
status (code 5). All subsequent samples below the threshold will return a “squelch enabled” status.

Table 1: agc squelch codes

code id description

0 LIQUID AGC SQUELCH ENABLED squelch enabled
1 LIQUID AGC SQUELCH RISE rising edge trigger
2 LIQUID AGC SQUELCH SIGNALHI signal level high
3 LIQUID AGC SQUELCH FALL falling edge trigger
4 LIQUID AGC SQUELCH SIGNALLO signal level low, but no timeout
5 LIQUID AGC SQUELCH TIMEOUT signal level low, timeout

8.3.1 Methodology

The reason for all six states (as opposed to just “squelch on” and “squelch off”) are to allow for the
AGC to adjust to complex signal dynamics. The default operation for the AGC is to disable the
squelch. For example if the AGC squelch control is in “signal low” mode (state 4) and the signal
increases above the threshold before timeout, the AGC will move back to the “signal high” mode
(state 2). This is particularly useful for weak signals whose received signal strength is hovering

52 8 AGC (AUTOMATIC GAIN CONTROL)

around the squelch threshold; it would be undesirable for the AGC to enable the squelch in the
middle of receiving a frame!

8.3.2 auto-squelch

The AGC module also allows for an auto-squelch mechanism which attempts to track the sig-
nal threshold to the noise floor of the receiver. This is accomplished by monitoring the signal
level when squelch is enabled. The auto-squelch mechanism has a 4dB headroom; if the signal
level drops below 4dB beneath the squelch threshold, the threshold will be decremented. This
is useful for receiving weak signals slightly above the noise floor, particularly when the exact
noise floor is not known or varies slightly over time. Auto-squelch is enabled/disabled using the
agc crcf squelch enable auto() and agc crcf squelch disable auto() methods respectively.

8.4 Interface

Listed below is the full interface to the agc family of objects. While each method is listed for the
agc crcf object, the same functionality applies to the agc rrrf object.

agc crcf create() creates an agc object with default parameters. By default the minimum gain
is 10−6, the maximum gain is 106, the initial gain is 1, and the estimate of the input signal
level is 0. Also the AGC type is set to LIQUID AGC DEFAULT.

agc crcf destroy(q) destroys the object, freeing all internally-allocated memory.

agc crcf print(q) prints the agc object’s internals to stdout.

agc crcf reset(q) resets the state of the agc object. This unlocks the AGC and clears the
estimate of the input signal level.

agc crcf set gain limits(q,gmin,gmax) sets the minimum and maximum gain values, respec-
tively. This effectively specifies e0 and e1 as in Figure 1.

agc crcf lock(q) prevents the AGC from updating its gain estimate. The internal gain is stored
at the time of lock and used for all subsequent occurrences of execute(). This is primarily
used when the beginning of a frame has been detected, and perhaps the payload contains
amplitude-modulated data which can be corrupted with the AGC aggressively attacking the
signal’s high dynamics. Also, locking the AGC conserves clock cycles as the gain update is
not computed. Typically, the locked AGC consumes about 5× fewer clock cycles than its
unlocked state.

agc crcf unlock(q) unlocks the AGC from a locked state and resumes estimating the input signal
level and internal gain.

agc crcf execute(q,x,y) applies the gain to the input x, storing in the output sample y and
updates the AGC’s internal tracking loops (of not locked).

agc crcf get signal level(q) returns a linear estimate of the input signal’s energy level.

agc crcf get rssi(q) returns an estimate of the input signal’s energy level in dB.

8.4 Interface 53

agc crcf get gain(q) returns the agc object’s internal gain.

agc crcf squelch activate(q) activates the AGC’s squelch module.

agc crcf squelch deactivate(q) deactivates the AGC’s squelch module.

agc crcf squelch enable auto(q) activates the AGC’s automatic squelch module.

agc crcf squelch disable auto(q) deactivates the AGC’s automatic squelch module.

agc crcf squelch set threshold(q,t) sets the threshold of the squelch.

agc crcf squelch set timeout(q,t) sets the timeout (number of samples) after the signal level
has dropped before enabling the squelch again.

agc crcf squelch get status(q) returns the squelch status code (see Table 1).

Here is a basic example of the agc object in liquid:

1 // file: doc/listings/agc.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 agc_rrrf q = agc_rrrf_create(); // create object

6 agc_rrrf_set_bandwidth(q,1e-3f); // set loop filter bandwidth

7

8 float x; // input sample

9 float y; // output sample

10

11 // ...

12

13 agc_rrrf_execute(q, x, &y); // repeat as necessary

14

15 agc_rrrf_destroy(q); // clean it up

16 }

A demonstration of the transient response of the agc crcf type can be found in Figure 3 in which
an input complex sinusoidal pulse is fed into the AGC. Notice the initial overshoot at the output
signal. A few more detailed examples can be found in the examples subdirectory.

54 8 AGC (AUTOMATIC GAIN CONTROL)

-1

 0

 1

 0 500 1000 1500 2000

in
p

u
t

s
ig

n
a

l

Sample Index

real
imag

-1

 0

 1

 0 500 1000 1500 2000

o
u

tp
u

t
s
ig

n
a

l

Sample Index

real
imag

Figure 3: agc crcf transient response

55

9 audio

The audio module in liquid provides several objects and functions for compressing, digitizing,
and manipulating audio signals. This is particularly useful for encoding audio data for wireless
communications.

9.1 cvsd (continuously variable slope delta)

Continuously variable slope delta (CVSD) source encoding is used for data compression of audio
signals. CVSD is a lossy compression whose quality is directly related to the sampling frequency
and is generally most practical for speech applications. It is a form of delta modulation where
∆ (the step size) is changed continuously to minimize slope-overload distortion [35, p. 131]. The
output bit stream has a rate equal to that of the sampling frequency. It is considered to be a
moderate compromise between quality and complexity.

9.1.1 Theory

The algorithm attempts to dynamically adjust the value of ∆ to track to the input signal. As with
regular delta modulation algorithms, if the decoded reference signal exceeds the input (the error
signal is negative), a binary 0 is sent and ∆ is subtracted from the reference, otherwise a binary 1

is sent and ∆ is added. However CVSD observes the previous N transmitted bits are stored in a
buffer b̂; ∆ is increased by ζ if they are equal and decreased otherwise. This improves the dynamic
range of the encoder over fixed-delta modulation encoders. A summary of the encoding procedure
can be found in Algorithm 2.

Algorithm 2 CVSD encoder algorithm

1: x← {x0, x1, x2, . . .} (input audio samples)
2: v0 ← 0 (initial output reference)
3: ∆0 ← ∆min (initialize step size)
4: b̂0 ← {0, 0, . . . , 0} (initialize N -bit buffer)
5: for k = 0, 1, 2, . . . do

6: bk ←
{

0 vk > xk

1 else
(compute output bit)

7: b̂k ← {b̂1, b̂2, . . . , b̂N−1, bk} (append output bit to end of buffer)
8: m←∑N−1

i=0 b̂i (compute sum of last N bits)

9: ∆k ←
{

∆k−1ζ m = 0,m = N

∆k−1/ζ else
(adjust step size)

10: vk+1 ← vk + (−1)1−bk∆k (adjust reference value)
11: end for

The decoder reverses this process; by retaining the past N bit inputs in a buffer b̂, the value of ∆
can be adjusted appropriately. A summary of the decoding procedure can be found in Algorithm 3.

56 9 AUDIO

Algorithm 3 CVSD decoder algorithm

1: b← {b0, b1, b2, . . .} (input bit samples)
2: v0 ← 0 (initial output reference)
3: ∆0 ← ∆min (initialize step size)
4: b̂0 ← {0, 0, . . . , 0} (initialize N -bit buffer)
5: for k = 0, 1, 2, . . . do
6: b̂k ← {b̂1, b̂2, . . . , b̂N−1, bk} (append output bit to end of buffer)
7: m←∑N−1

i=0 b̂i (compute sum of last N bits)

8: ∆k ←
{

∆k−1ζ m = 0,m = N

∆k−1/ζ else
(adjust step size)

9: vk+1 ← vk + (−1)1−bk∆k (adjust reference value)
10: yk ← vk (set output value)
11: end for

9.1.2 Pre-/Post-Filtering

To preserve the signal’s integrity the encoder applies a pre-filter to emphasize the high-frequency
information of the signal before the encoding process. The pre-filter is a simple 2-tap FIR filter
defined as

Hpre(z) = 1− αz−1 (12)

where α controls the amount of emphasis applied. Typical values fore pre-emphasis are 0.92 < α <
0.98; setting α = 0 completely disables this emphasis. This process is reversed on the decoder by
applying the inverse of Hpre(z) as a low-pass de-emphasis filter:

H−1
pre(z) =

1

1− αz−1
(13)

Additionally, the decoder adds a DC-blocking filter to reject any residual offset caused by the
decoding process. By itself the DC-blocking filter has a transfer function

H0(z) =
1− z−1

1− βz−1
(14)

where β controls the cut-off frequency of the filter and is typically set very close to 1. The default
value for β in liquid is 0.99. The full post-emphasis filter is therefore

Hpost(z) = H−1
pre(z)H0(z) =

1− z−1

1− (α+ β)z−1 + αβz−2
(15)

9.1.3 Interface

The cvsd object in liquid allows the user to select both ζ as well as N , the number of repeated
bits observed before ∆ is updated. The combination of these values with the sampling rate yields a
speech compression algorithm with moderate quality. Listed below is the full interface to the cvsd

object:

cvsd create(N,zeta,alpha) creates an agc object with parameters N , ζ, and α.

9.1 cvsd (continuously variable slope delta) 57

cvsd destroy(q) destroys a cvsd object, freeing all internally-allocated memory and objects.

cvsd print(q) prints the cvsd object’s internal parameters to the standard output.

cvsd encode(q,sample) encodes a single audio sample, returning the encoded bit.

cvsd decode(q,bit) decodes and returns a single audio sample from an input bit.

cvsd encode8(q,samples,byte) encodes a block of 8 samples returning the result in a single byte.

cvsd decode8(q,byte,samples) decodes a block of 8 samples from an encoded byte.

9.1.4 Example

Here is a basic example of the cvsd object in liquid:

1 // file: doc/listings/cvsd.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int nbits=3; // number of adjacent bits to observe

7 float zeta=1.5f; // slope adjustment multiplier

8 float alpha = 0.95; // pre-/post-filter coefficient

9

10 // create cvsd encoder/decoder

11 cvsd q = cvsd_create(nbits, zeta, alpha);

12

13 float x; // input sample

14 unsigned char b; // encoded bit

15 float y; // output sample

16

17 // ...

18

19 // repeat as necessary

20 {

21 b = cvsd_encode(q, x); // encode sample

22

23 y = cvsd_decode(q, b); // decode sample

24 }

25

26 cvsd_destroy(q); // destroy cvsd object

27 }

A demonstration of the algorithm can be seen in Figure 4 where the encoder attempts to track to an
input sinusoid. Notice that the encoder sometimes overshoots the reference signal. This distortion
results in degradations, particularly in the upper frequency bands. A more detailed example is
given in examples/cvsd example.c under the main liquid project directory.

58 9 AUDIO

-1

 0

 1

 0 50 100 150 200 250

ti
m

e
 s

e
ri
e

s

sample index

audio input
cvsd output

-80

-60

-40

-20

 0

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e
r

S
p

e
c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

audio input
cvsd output

Figure 4: cvsd example encoding a windowed sum of sine functions with ζ = 1.5, N = 2, and
α = 0.95.

59

10 buffer

The buffer module includes objects for storing, retrieving, and interfacing with buffered data sam-
ples.

10.1 window buffer

The window object is used to implement a sliding window buffer. It is essentially a first-in, first-out
queue but with the constraint that a fixed number of elements is always available, and the ability to
read the entire queue at once. This is particularly useful for filtering objects which use time-domain
convolution of a fixed length to compute its outputs. The window objects operate on a known data
type, e.g. float (windowf), and float complex (windowcf).

The buffer has a fixed number of elements which are initially zeros. Values may be pushed
into the end of the buffer (into the “right” side) using the push() method, or written in blocks via
write(). In both cases the oldest data samples are removed from the buffer (out of the “left” side).
When it is necessary to read the contents of the buffer, the read() method returns a pointer to its
contents. liquid implements this shifting method in the same manner as a ring buffer, and linearizes
the data very efficiently, without performing any unnecessary data memory copies. Effectively, the
window looks like:

← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 2 3 4 5 6 7 8

←

old samples window contents new samples

Listed below is the full interface for the window family of objects. While each method is listed for
windowcf (a window with float complex elements), the same functionality applies to the windowf
object.

windowcf create(n) creates a new window with an internal length of n samples.

windowcf recreate(q,n) extends an existing window’s size, similar to the standard C library’s
realloc() to n samples. If the size of the new window is larger than the old one, the newest
values are retained at the beginning of the buffer and the oldest values are truncated. If the
size of the new window is smaller than the old one, the oldest values are truncated.

windowcf destroy(q) destroys the object, freeing all internally-allocated memory.

windowcf clear(q) clears the contents of the buffer by setting all internal values to zero.

windowcf index(q,i,*v) retrieves the ith sample in the window, storing the output value in v.
This is equivalent to first invoking read() and then indexing on the resulting pointer; however
the result is obtained much faster. Therefore invoking windowcf index(q,0,*v) returns the
oldest value in the window.

windowcf read(q,**r) reads the contents of the window by returning a pointer to the aligned
internal memory array. This method guarantees that the elements are linearized. This method
should only be used for reading; writing values to the buffer has unspecified results.

60 10 BUFFER

windowcf push(q,v) shifts a single sample v into the right side of the window, pushing the oldest
(left-most) sample out of the end. Unlike stacks, the windowcf object has no equivalent “pop”
method, as values are retained in memory until they are overwritten.

windowcf write(q,*v,n) writes a block of n samples in the array v to the window. Effectively,
it is equivalent to pushing each sample one at a time, but executes much faster.

Here is an example demonstrating the basic functionality of the window object. The comments
show the internal state of the window after each function call as if the window were a simple C
array.

1 // file: doc/listings/window.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // initialize array for writing

6 float v[] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0};

7

8 // create window with 10 elements

9 windowf w = windowf_create(10);

10 // window[10] : {0 0 0 0 0 0 0 0 0 0}

11

12 // push 4 elements into the window

13 windowf_push(w, 1);

14 windowf_push(w, 3);

15 windowf_push(w, 6);

16 windowf_push(w, 2);

17 // window[10] : {0 0 0 0 0 0 1 3 6 2}

18

19 // push 4 elements at a time

20 windowf_write(w, v, 4);

21 // window[10] : {0 0 1 3 6 2 9 8 7 6}

22

23 // recreate window (truncate to last 6 elements)

24 w = windowf_recreate(w,6);

25 // window[6] : {6 2 9 8 7 6}

26

27 // recreate window (extend to 12 elements)

28 w = windowf_recreate(w,12);

29 // window[12] : {0 0 0 0 0 0 6 2 9 8 7 6}

30

31 // read buffer (return pointer to aligned memory)

32 float * r;

33 windowf_read(w, &r);

34 // r[12] : {0 0 0 0 0 0 6 2 9 8 7 6}

35

36 // clean up allocated object

37 windowf_destroy(w);

38 }

10.2 wdelay delay buffer 61

10.2 wdelay delay buffer

The wdelay object in liquid implements a an efficient digital delay line with a minimal amount of
memory. Specifically, the transfer function is just

Hd(z) = z−k (16)

where k is the number of samples of delay. The interface for the wdelay family of objects is listed
below. While the interface is given for wdelayf for floating-point precision, equivalent interfaces
exist for float complex with wdelaycf.

wdelayf create(k) creates a new wdelayf object with a delay of k samples.

wdelayf recreate(q,k) adjusts the delay size, preserving the internal state of the object.

wdelayf destroy(q) destroys the object, freeing all internally-allocated memory.

wdelayf print(q) prints the object’s properties internal state to the standard output.

wdelayf clear(q) clears the contents of the internal buffer by setting all values to zero.

wdelayf read(q,y) reads the sample at the head of the buffer and stores it to the output pointer.

wdelayf push(q,x) pushes a sample into the buffer.

62 11 DOTPROD (VECTOR DOT PRODUCT)

11 dotprod (vector dot product)

This module provides interfaces for computing a vector dot product between two equally-sized vec-
tors. Dot products are commonly used in digital signal processing for communications, particularly
in filtering and matrix operations. Given two vectors of equal length x = [x(0), x(1), . . . , x(N − 1)]T

and v = [v(0), v(1), . . . , v(N − 1)]T , the vector dot product between them is computed as

x · v = xTv =
N−1∑
k=0

x(k)v(k) (17)

A number of other liquid modules rely on dotprod, such as filtering and equalization.

11.1 Specific machine architectures

The vector dot product has a complexity of O(N) multiply-and-accumulate operations. Because
of its prevalence in multimedia applications, a considerable amount of research has been put into
computing the vector dot product as efficiently as possible. Software-defined radio is no exception
as basic profiling will likely demonstrate that a considerable portion of the processor is spent
computing it. Certain machine architectures have specific instructions for computing vector dot
products, particularly those which use a single instruction for multiple data (SIMD) such as MMX,
SSE, AltiVec, etc.

11.2 Interface

There are effectively two ways to use the dotprod module. In the first and most general case, a
vector dot product is computed on two input vectors x and v whose values are not known a priori.
In the second case, a dotprod object is created around vector v which does not change (or rarely
changes) throughout its life cycle. This is the more convenient method for filtering objects which
don’t usually have time-dependent coefficients. Listed below is a simple interface example to the
dotprod module object:

1 // file: doc/listings/dotprod_rrrf.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // create input arrays

6 float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f};

7 float v[] = { 0.1f, -0.2f, 1.0f, -0.2f, 0.1f};

8 float y;

9

10 // run the basic vector dot product, store in ’y’

11 dotprod_rrrf_run(x,v,5,&y);

12

13 // create dotprod object and execute, store in ’y’

14 dotprod_rrrf q = dotprod_rrrf_create(v,5);

15 dotprod_rrrf_execute(q,x,&y);

16 dotprod_rrrf_destroy(q);

17 }

11.2 Interface 63

Table 2: dotprod object types

precision input/output coefficients interface

float real real dotprod rrrf

float complex complex dotprod cccf

float complex real dotprod crcf

In both cases the dotprod can be easily integrated with the window object (§10.1) for managing
input data and alignment. There are three types of dot product objects and are listed in Table 2.

Listed below is a brief description of the dotprod object interfaces. While the types are described
using the dotprod rrrf object, the same holds true for all other types.

dotprod rrrf run(h,x,n,y) executes a vector dot product between two vectors h and x, each of
length n and stores the result in the output y. This is not a structured method and does not
require creating a dotprod object, however does not take advantage of SIMD instructions
if available. Rather than speed, its intent is to provide a simple interface to demonstrate
functional correctness.

dotprod rrrf create(v,n) creates a dotprod object with coefficients v of length n.

dotprod rrrf recreate(q,v,n) recreates a dotprod object with a new set of coefficients v with
a (possibly) different length n.

dotprod rrrf destroy(q) destroys a dotprod object, freeing all internally-allocated memory.

dotprod rrrf print(q) prints the object internals to the screen.

dotprod rrrf execute(q,x,y) executes a dot product with an input vector x and stores the result
in y.

64 12 EQUALIZATION

12 equalization

This section describes the equalizer module and the functionality of two digital linear adaptive
equalizers implemented in liquid, LMS and RLS. Their interfaces are nearly identical; however
their internal functionality is quite different. Specifically the LMS algorithm is less computationally
complex but is slower to converge than the RLS algorithm.

12.1 System Description

Suppose a known transmitted symbol sequence d = [d(0), d(1), . . . , d(N − 1)] which passes through
an unknown channel filter hn of length q. The received symbol at time n is therefore

y(n) =

q−1∑
k=0

hn(k)d(n− k) + ϕ(n) (18)

where ϕ(n) represents white Gauss noise. The adaptive linear equalizer attempts to use a finite
impulse response (FIR) filter w of length p to estimate the transmitted symbol, using only the
received signal vector y and the known data sequence d, viz

d̂(n) = wT
nyn (19)

where yn = [y(n), y(n − 1), . . . , y(n − p + 1)]T . Several methods for estimating w are known in
the literature, and typically rely on iteratively adjusting w with each input though a recursion
algorithm. This section provides a very brief overview of two prevalent adaptation algorithms; for
a more in-depth discussion the interested reader is referred to [35, 21].

12.2 eqlms (least mean-squares equalizer)

The least mean-squares (LMS) algorithm adapts the coefficients of the filter estimate using a
steepest descent (gradient) of the instantaneous a priori error. The filter estimate at time n + 1
follows the following recursion

wn+1 = wn − µgn (20)

where µ is the iterative step size, and gn the normalized gradient vector, estimated from the error
signal and the coefficients vector at time n.

12.3 eqrls (recursive least-squares equalizer)

The recursive least-squares (RLS) algorithm attempts to minimize the time-average weighted square
error of the filter output, viz

c(wn) =
n∑
i=0

λi−n
∣∣∣d(i)− d̂(i)

∣∣∣2 (21)

where the forgetting factor 0 < λ ≤ 1 which introduces exponential weighting into past data,
appropriate for time-varying channels. The solution to minimizing the cost function c(wn) is
achieved by setting its partial derivatives with respect to wn equal to zero. The solution at time
n involves inverting the weighted cross correlation matrix for yn, a computationally complex task.

12.4 Interface 65

This step can be circumvented through the use of a recursive algorithm which attempts to estimate
the inverse using the a priori error from the output of the filter. The update equation is

wn+1 = wn + ∆n (22)

where the correction factor ∆n depends on yn and wn, and involves several p×p matrix multiplica-
tions. The RLS algorithm provides a solution which converges much faster than the LMS algorithm,
however with a significant increase in computational complexity and memory requirements.

12.4 Interface

The eqlms and eqrls have nearly identical interfaces so we will leave the discussion to the eqlms

object here. Like most objects in liquid, eqlms follows the typical create(), execute(), destroy()
life cycle. Training is accomplished either one sample at a time, or in a batch cycle. If trained one
sample at a time, the symbols must be trained in the proper order, otherwise the algorithm won’t
converge. One can think of the equalizer object in liquid as simply a firfilt object (finite impulse
response filter) which has the additional ability to modify its own internal coefficients based on
some error criteria. Listed below is the full interface to the eqlms family of objects. While each
method is listed for eqlms cccf, the same functionality applies to eqlms rrrf as well as the RLS
equalizer objects (eqrls cccf and eqrls rrrf).

eqlms cccf create(*h,n) creates and returns an equalizer object with n taps, initialized with the
input array h. If the array value is set to the NULL pointer then the internal coefficients are
initialized to {1, 0, 0, . . . , 0}.

eqlms cccf destroy(q) destroys the equalizer object, freeing all internally-allocated memory.

eqlms cccf print(q) prints the internal state of the eqlms object.

eqlms cccf set bw(q,w) sets the bandwidth of the equalizer to w. For the LMS equalizer this
is the learning parameter µ which has a default value of 0.5. For the RLS equalizer the
“bandwidth” is the forgetting factor λ which defaults to 0.99.

eqlms cccf reset(q) clears the internal equalizer buffers and sets the internal coefficients to the
default (those specified when create() was invoked).

eqlms cccf push(q,x) pushes a sample x into the internal buffer of the equalizer object.

eqlms cccf execute(q,*y) generates the output sample y by computing the vector dot product
(see §11) between the internal filter coefficients and the internal buffer.

eqlms cccf step(q,d,d hat) performs a single iteration of equalization with an estimated output
d̂ for an expected output d. The weights are updated internally defined by (20) for the LMS
equalizer and (22) for the RLS equalizer.

eqlms cccf get weights(q,*w) returns the internal filter coefficients (weights) at the current
state of the equalizer.

Here is a simple example:

66 12 EQUALIZATION

1 // file: doc/listings/eqlms_cccf.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int n=32; // number of training symbols

7 unsigned int p=10; // equalizer order

8 float mu=0.500f; // LMS learning rate

9

10 // allocate memory for arrays

11 float complex x[n]; // received samples

12 float complex d_hat[n]; // output symbols

13 float complex d[n]; // traning symbols

14

15 // ...initialize x, d_hat, d...

16

17 // create LMS equalizer and set learning rate

18 eqlms_cccf q = eqlms_cccf_create(NULL,p);

19 eqlms_cccf_set_bw(q, mu);

20

21 // iterate through equalizer learning

22 unsigned int i;

23 {

24 // push input sample

25 eqlms_cccf_push(q, x[i]);

26

27 // compute output sample

28 eqlms_cccf_execute(q, &d_hat[i]);

29

30 // update internal weights

31 eqlms_cccf_step(q, d[i], d_hat[i]);

32 }

33

34 // clean up allocated memory

35 eqlms_cccf_destroy(q);

36 }

For more detailed examples, see examples/eqlms cccf example.c and examples/eqrls cccf example.c.

12.5 Blind Equalization

The equalizer interface above permits decision-directed equalization. This is a form of blind equal-
ization where the data are not known, but the modulation scheme is. This type of equalization is
useful for adapting to channel conditions, matched-filter ISI imperfections, and small timing offsets.
Listed below is a basic program to equalize to a BPSK signal with unknown data.

1 // file: doc/listings/eqlms_cccf_blind.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

12.5 Blind Equalization 67

6 unsigned int k=2; // filter samples/symbol

7 unsigned int m=3; // filter semi-length (symbols)

8 float beta=0.3f; // filter excess bandwidth factor

9 float mu=0.100f; // LMS equalizer learning rate

10

11 // allocate memory for arrays

12 float complex * x; // equalizer input sample buffer

13 float complex * y; // equalizer output sample buffer

14

15 // ...initialize x, y...

16

17 // create LMS equalizer (initialized on square-root Nyquist

18 // filter prototype) and set learning rate

19 eqlms_cccf q = eqlms_cccf_create_rnyquist(LIQUID_RNYQUIST_RRC, k, m, beta, 0);

20 eqlms_cccf_set_bw(q, mu);

21

22 // iterate through equalizer learning

23 unsigned int i;

24 {

25 // push input sample into equalizer and compute output

26 eqlms_cccf_push(q, x[i]);

27 eqlms_cccf_execute(q, &y[i]);

28

29 // decimate output

30 if ((i%k) == 0) {

31 // make decision and update internal weights

32 float complex d_hat = crealf(y[i]) > 0.0f ? 1.0f : -1.0f;

33 eqlms_cccf_step(q, d_hat, y[i]);

34 }

35 }

36

37 // destroy equalizer object

38 eqlms_cccf_destroy(q);

39 }

The equalizer filter is initialized with square-root raised-cosine coefficients (see §15.5.3 for details of
square-root Nyquist filter designs). After computing each output symbol, the transmitted symbol
is estimated and the equalizer adjusts its coefficients internally using the step() method. This can
be easily combined with the linear modem object’s modem get demodulator sample() interface to
return the estimated symbol after demodulation (see §19.2).

An example of the decision-directed equalizer for a QPSK signal with unknown data is depicted
in Figure 5. A QPSK signal filtered with a square-root raised-cosine filter is transmitted through a
noisy channel with several multi-path components, contributing to inter-symbol interference. The
receiver uses an equalizer initialized with a matched filter. The output time series in Figure 5(a)
shows that the first 200 symbols are particularly noisy with a significant amount of inter-symbol
interference due to the effects of the channel. The equalizer, however, quickly adapts and removes
most of the interference as can be seen in Figure 5(b) (the composite spectrum is nearly flat in
the pass-band). For a more detailed example, see examples/eqlms cccf blind example.c located
under the main project directory.

68 12 EQUALIZATION

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 200 400 600 800 1000

R
e

a
l

Symbol Index

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 200 400 600 800 1000

Im
a

g

Symbol Index

(a) Equalizer output (time series)

-10

-8

-6

-4

-2

 0

 2

 4

 6

-0.4 -0.2 0 0.2 0.4

P
o
w

e
r

S
p
e
c
tr

a
l
D

e
n
s
it
y
 [
d
B

]

Normalized Frequency

transmit
channel

equalizer
composite

(b) Power Spectral Density

Figure 5: Blind eqlms cccf example, k = 2 samples/symbol

12.6 Comparison of eqlms and eqrls Object Families 69

12.6 Comparison of eqlms and eqrls Object Families

The performance of the eqlms and eqrls equalizers are compared by generating a channel with an
impulse response representing a strong line-of-sight (LoS) component followed by random echoes.
Each was trained on 512 iterations of a known QPSK-modulated training sequence with learning
rate parameters µ = 0.999 and λ = 0.999 for the LMS and RLS algorithms, respectively. A
small amount of noise was injected after the channel filter to demonstrate the robustness of the
algorithms. The results of two simulations are shown in Figure 6 demonstrating a 10-tap equalizer
applied to the response of a 6-tap channel with an SNR of 40 dB.

The pass-band power spectral densities (PSD) of the channel and the equalizer outputs are
depicted in Figure 6(a). Notice that the inter-symbol interference of the channel causes its PSD
to have a non-flat response. Theoretically, if the inter-symbol interference is completely removed,
the response of both the channel and the equalizer will be completely flat (neglecting any noise
present). While the PSD of the equalized output is nearly flat in the figure, it is important to
realize that these algorithms minimize a cost function defined as the square of the a priori filter
output error, and do not necessarily force the PSD to zero. The classic zero-forcing equalizer has
several drawbacks:

1. the equalizing filter which would give this response is not necessarily realizable; that is, not
all channels can be perfectly inverted,

2. forcing the frequency response to zero increases the noise terms of frequencies where the
spectra of the channel response is low. In this regard, the zero-forcing equalizer only reduces
inter-symbol interference and does not maximize the ratio of signal power to both interference
and noise power as the LMS and RLS algorithms do.

It is interesting to note that both the LMS and RLS equalizers converge to nearly the same solution.
The RLS equalizer, however, has a slightly lower error after training while converging to its error
minimum much faster. The RLS equalizer, however, has a much higher computational complexity.

70 12 EQUALIZATION

-10

-5

 0

 5

 10

-0.4 -0.2 0 0.2 0.4

P
o
w

e
r

S
p
e
c
tr

a
l
D

e
n
s
it
y
 [
d
B

]

Normalized Frequency

received
LMS
RLS

(a) PSD

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Q
u
a
d
ra

tu
re

 p
h
a
s
e

In-phase

received
LMS EQ
RLS EQ

(b) constellation

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

R
e
a
l

Filter index

channel
LMS
RLS

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

Im
a
g

Filter index

channel
LMS
RLS

(c) taps

10
-3

10
-2

10
-1

10
0

10
1

 0 100 200 300 400 500

M
e
a
n
-s

q
u
a
re

d
 e

rr
o
r

Sample index

LMS
RLS

(d) mean-squared error

Figure 6: Comparison of 10-tap eqlms cccf and eqrls cccf equalizer objects for a 6-tap channel
with 40 dB SNR

71

13 fec (forward error correction)

The fec module implements a set of forward error-correction codes for ensuring and validating
data integrity through a noisy channel. Redundant “parity” bits are added to a data sequence to
help correct errors introduced by the channel. The number of correctable errors depends on the
number of parity bits of the coding scheme, which in turn affects its rate (efficiency). The fec

object realizes forward error-correction capabilities in liquid while the methods checksum() and
crc32() strictly implement error detection. Certain FEC schemes are only available to liquid by
installing the external libfec library [25], available as a free download. A few low-rate (and fairly
low efficiency) codes are available internally.

13.1 Cyclic Redundancy Check (Error Detection)

A cyclic redundancy check (CRC) is, in essence, a strong algebraic error detection code that com-
putes a key on a block of data using base-2 polynomials. While it is a strong error-detection
method, a CRC is not an error-correction code. Here is a simple example:

1 // file: doc/listings/crc.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // initialize data array

6 unsigned char data[4] = {0x25, 0x62, 0x3F, 0x52};

7 crc_scheme scheme = LIQUID_CRC_32;

8

9 // compute CRC on original data

10 unsigned char key = crc_generate_key(scheme, data, 4);

11

12 // ... channel ...

13

14 // validate (received) message

15 int valid_data = crc_validate_message(scheme, data, 4, key);

16 }

Also available for error detection in liquid is a checksum. A checksum is a simple way to validate
data received through un-reliable means (e.g. a noisy channel). A checksum is, in essence, a weak
error detection code that simply counts the number of ones in a block of data (modulo 256). The
limitation, however, is that multiple bit errors might result in a false positive validation of the
corrupted data. The checksum is not a strong an error detection scheme as the cyclic redundancy
check. Table 3 lists the available codecs and gives a brief description for each. For a detailed
example program, see examples/crc example.c in the main liquid directory.

13.2 h74, h84, h128 (Hamming codes)

Hamming codes are a specific type of block code which use parity bits capable of correcting one bit
error in the block. With the addition of an extra parity bit, they are able to detect up to two errors,
but are still only able to correct one. liquid implements the Hamming(7,4), Hamming(8,4), and
Hamming(12,8) codes. The Hamming(8,4) can detect one additional error over the Hamming(7,4)
code; however at the time of writing this document the number of detected errors is not passed to

72 13 FEC (FORWARD ERROR CORRECTION)

Table 3: Error-detection codecs available in liquid

scheme size (bits) description

LIQUID CRC UNKNOWN - unknown/unsupported scheme
LIQUID CRC NONE 0 no error-detection
LIQUID CRC CHECKSUM 8 basic checksum
LIQUID CRC 8 8 8-bit CRC, poly=0x07

LIQUID CRC 16 16 16-bit CRC, poly=0x8005

LIQUID CRC 24 24 24-bit CRC, poly=0x5D6DCB

LIQUID CRC 32 32 32-bit CRC, poly=0x04C11DB7

the user so the Hamming(8,4) code is effectively the same as Hamming(7,4) but with a lower rate.
Additionally, liquid implements the Hamming(12,8) code which accepts an 8-bit symbol and adds
four parity bits, extending it to a 12-bit symbol. This yields a theoretical rate of 2/3, and actually
has a performance very similar to that of the Hamming(7,4) code, even with a higher rate.

13.3 rep3, rep5 (simple repeat codes)

The rep3 code is a simple repeat code which simply repeats the message twice (transmits it three
times). The decoder takes a majority vote of the bits received by applying a simple series bit
masks. If the original bit is represented as s, then the transmitted bits are sss. Let the received
bit sequence be r0r1r2. The estimated transmitted bit is 0 if the sum of the received bits is less
than 2, and 1 otherwise. This is equivalent to

ŝ = (r0 ∧ r1) + (r0 ∧ r2) + (r1 ∧ r2)

where + represents logical or and ∧ represents logical and. An error is detected if

ê = (r0 ⊕ r1) + (r0 ⊕ r2) + (r1 ⊕ r2)

where ⊕ represents logical exclusive or. In this fashion it is easy to decode several bytes of data at
a time because machine architectures have low-level bit-wise manipulation instructions which can
compute logical exclusive or and or very quickly. This is precisely how liquid decodes rep3 data,
only in this case, s, r0, r1, and r2 represent a bytes of data rather than bits.

The rep5 code operates similarly, except that it transmits five copies of the original data
sequence, rather than just three. The decoder takes the five received bits r0, . . . , r4 and adds
(modulo 2) the logical and of every combination of three bits, viz

ŝ =
∑
i 6=j 6=k

(ri ∧ rj ∧ rk)

This roughly doubles the number of clock cycles to decode over rep3.
It is well-known that repeat codes do not have strong error-correction capabilities for their rate,

are are located far from the Shannon capacity bound [35]. They are exceptionally weak relative
to convolutional Viterbi and Reed-Solomon codes. However, their simplicity in implementation
and low computational complexity gains them a place in digital communications, particularly in
software radios where spectral efficiency goals might be secondary to processing constraints.

13.4 g2412, Golay(24,12) block code 73

13.4 g2412, Golay(24,12) block code

The Golay(24,12) code is a 1/2-rate block code which is capable of correcting up to three errors and
detecting up to four. In truth, the Golay(24,12) code is an extension of the Golay(23,12) “perfect”
code by adding an extra parity bit [27, §4.6]. Specifically, the generator and parity check matrices
are constructed systematically from a 12× 12 matrix P as

P =

1 0 0 0 1 1 1 0 1 1 0 1
0 0 0 1 1 1 0 1 1 0 1 1
0 0 1 1 1 0 1 1 0 1 0 1
0 1 1 1 0 1 1 0 1 0 0 1
1 1 1 0 1 1 0 1 0 0 0 1
1 1 0 1 1 0 1 0 0 0 1 1
1 0 1 1 0 1 0 0 0 1 1 1
0 1 1 0 1 0 0 0 1 1 1 1
1 1 0 1 0 0 0 1 1 1 0 1
1 0 1 0 0 0 1 1 1 0 1 1
0 1 0 0 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0

(23)

The generator matrix is simply G =
[
P T I12

]
and the parity check matrix is H = [I12 P]. Notice

that P T = P ; this plays an important role in systematic decoding [3].

13.5 SEC-DED block codes

The SEC-DED(n, k) codes implement a certain class of “single error correction, double error de-
tection” block codes. For the SEC-DED codes implemented in liquid n can be represented by an
integer m such that n = 2m and k = n+m+ 2. Encoding and decoding begins with the (n−k)×n
matrix P such that the generator matrix is simply G =

[
In P T

]
and the parity check matrix is

H = [P In−k]. Decoding can be achieved by computing the syndrome vector and then using a
look-up table to determine the location of the error. If the computed syndrome cannot be associ-
ated with any particular error location then multiple errors must have occurred for which the code
cannot correct. There is currently no soft decoding implemented in liquid for the SEC-DED codes.

13.5.1 secded2216, SEC-DED(22,16) block code

Encoding and decoding begins with the 6× 16 matrix P as

P (22,16) =

1001 1001 0011 1100

0011 1110 1000 1010

1110 1110 0110 0000

1110 0001 1101 0001

0001 0011 1100 0111

0100 0100 0011 1111

74 13 FEC (FORWARD ERROR CORRECTION)

13.5.2 secded3932, SEC-DED(39,32) block code

Encoding and decoding begins with the 7× 32 matrix P as

P (39,32) =

10001010 10000010 00001111 00011011

00010000 00011111 01110001 01100001

00010110 11110000 10010010 10100110

11111111 00000001 10100100 01000100

01101100 11111111 00001000 00001000

00100001 00100100 11111111 10010000

11000001 01001000 01000000 11111111

13.5.3 secded7264, SEC-DEC(72,64) block code

The SEC-DED(72,64) code is a 8/9-rate block code. Encoding and decoding begins with the 8×64
matrix P as

P (72,64) =

11111111 00001111 00001111 00001100 01101000 10001000 10001000 10000000

11110000 11111111 00000000 11110011 01100100 01000100 01000100 01000000

00110000 11110000 11111111 00001111 00000010 00100010 00100010 00100110

11001111 00000000 11110000 11111111 00000001 00010001 00010001 00010110

01101000 10001000 10001000 10000000 11111111 00001111 00000000 11110011

01100100 01000100 01000100 01000000 11110000 11111111 00001111 00001100

00000010 00100010 00100010 00100110 11001111 00000000 11111111 00001111

00000001 00010001 00010001 00010110 00110000 11110000 11110000 11111111

13.6 libfec (convolutional and Reed-Solomon codes)

liquid takes advantage of convolutional and Reed-Solomon codes defined in libfec [25]. These
codes have much stronger error-correction capabilities than rep3, rep5, h74, h84, and h128 but are
also much more computationally intensive to the host processor. liquid uses the rate 1/2(K = 7),
1/2(K = 9), 1/3(K = 9), and r1/6(K = 15) codes defined in libfec, but extends the two half-rate
codes to punctured codes. These punctured codes (also known as “perforated” codes) are not as
strong and cannot correct as many errors, but are more efficient and use less overhead than their
half-rate counterparts. The 8-bit Reed-Solomon code is a (255,223) block code, also defined in
libfec. Nominally, the scheme accepts 223 bytes (8-bit symbols) and adds 32 parity symbols to
form a 255-symbol encoded block. libfec is an external library that liquid will leverage if installed,
but will still compile otherwise (see §26.1 for details).

13.7 Interface

In designing the fec interface, we have tried to keep simplicity and reconfigurability in mind.
The various forward error-correction schemes accept bits or symbols formatted in different lengths
and have vastly different interfaces. This potentially makes switching from one scheme to another
difficult as one needs to restructure the data accordingly. liquid takes care of all this formatting
under the hood; regardless of the scheme used, the fec object accepts a block of uncoded data
bytes and encodes them into an output block of coded data bytes.

fec create(scheme,*opts) creates a fec object of a specific scheme (see Table 4 for available
codecs). Notice that the length of the input message does not need to be specified until

13.7 Interface 75

encode() or decode() is invoked. The second argument is intended for future development
and should be ignored by passing the NULL pointer (see example below).

fec recreate(q,scheme,opts) recreates an existing fec object with a different scheme.

fec destroy(q) destroys a fec object, freeing all internally-allocated memory arrays.

fec encode(q,n,*msg dec,*msg enc) runs the error-correction encoder scheme on an n-byte in-
put data array msg dec, storing the result in the output array msg enc. To obtain the length
of the output array necessary, use the fec get enc msg length() method.

fec decode(q,n,*msg enc,*msg dec) runs the error-correction decoder on an input array msg enc

of k encoded bytes. The resulting best-effort decoded message is written to the n-byte out-
put array msg dec, allocated by the user. Notice that like the fec encode() method, the
input length n refers to the decoded message length. Depending upon the error-correction
capabilities of the scheme, the resulting data might have been corrupted, and therefore it is
recommended to use either a checksum or a cyclic redundancy check (§13.1) to validate data
integrity.

fec get enc msg length(scheme,n) returns the length k of the encoded message in bytes for an
uncoded input of n bytes using the specified encoding scheme. This method can be called
before the fec object is created and is useful for allocating initial memory arrays.

Listed below is a simple example demonstrating the basic interface to the fec encoder/decoder
object:

1 // file: doc/listings/fec.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 unsigned int n = 64; // decoded message length (bytes)

6 fec_scheme fs = LIQUID_FEC_HAMMING74; // error-correcting scheme

7

8 // compute encoded message length

9 unsigned int k = fec_get_enc_msg_length(fs, n);

10

11 // allocate memory for data arrays

12 unsigned char msg_org[n]; // original message

13 unsigned char msg_enc[k]; // encoded message

14 unsigned char msg_rec[k]; // received message

15 unsigned char msg_dec[n]; // decoded message

16

17 // create fec objects

18 fec encoder = fec_create(fs,NULL);

19 fec decoder = fec_create(fs,NULL);

20

21 // repeat as necessary

22 {

23 // ... initialize message ...

24

76 13 FEC (FORWARD ERROR CORRECTION)

25 // encode message

26 fec_encode(encoder, n, msg_org, msg_enc);

27

28 // ... push through channel ...

29

30 // decode message

31 fec_decode(decoder, n, msg_rec, msg_dec);

32 }

33

34 // clean up objects

35 fec_destroy(encoder);

36 fec_destroy(decoder);

37

38 return 0;

39 }

For a more detailed example demonstrating the full capabilities of the fec object, see examples/fec example.c.

13.7.1 Soft Decoding

liquid supports soft decoding of most error-correcting schemes (with the exception of the Golay,
SEC-DED, and Reed-Solomon codes). Soft decoding for all codes requires the log-likelihood ratio
(LLR) output of the demodulator which can be achieved with the appropriate call: modem demodulate soft()

(see §19.2.10 for details). The performance improvement for soft decoding varies for both the mod-
ulation and FEC scheme used; however in general one can expect to see an improvement of approx-
imately 1.5 dB Eb/N0 over hard-decision decoding. Figure 7 shows the performance improvement
of using soft-decision vs. hard-decision decoding for the Hamming(8,4) block code.

13.8 Performance

The performance of an error-correction scheme is typically measured in the bit error rate (BER)
for a antipodally modulated signal in the presence of additive white Gauss noise (AWGN). Certain
applications prefer measuring performance in terms of the signal energy while others require bit
energy, all relative to the noise variance. The two are related by

Eb
N0

=
Es
rN0

(24)

where Es is the signal energy, Eb is the bit energy, N0 is the noise energy, and r is the rate of the
modulation and coding scheme pair, measured in bits/s/Hz. Table 4 lists the available codecs and
gives a brief description for each. All convolutional and Reed-Solomon codes are available only if
libfec is installed [25].

Figures 8, 9, and 10 plot the bit error-rate performance of the forward error-correction schemes
available in liquid for a BPSK signal in an AWGN channel. Each figure depicts the BER versus
Eb/N0 (Es/N0 compensated for coding rate). The error rates were computed by generating packets
of 1024 bits, encoding using the appropriate FEC scheme, modulating the resulting bits with
BPSK (see §19.2.3), adding noise, demodulating, and decoding. Each point was simulated with a
minimum of 4,000,000 trials and a minimum of 1,000 bit errors. The raw data can be found in the
doc/data/fec-ber/ subdirectory.

13.8 Performance 77

Table 4: Forward error-correction codecs available in liquid with Eb/N0 required for a BER of
10−5

asymptotic γb [dB] γb [dB]
scheme rate (hard) (soft) description

Built-in Block Codes

LIQUID FEC UNKNOWN - - - unknown/unsupported scheme
LIQUID FEC NONE 1 9.59 9.59 no error-correction
LIQUID FEC REP3 1/3 11.08 9.56 simple repeat code
LIQUID FEC REP5 1/5 11.39 9.64 simple repeat code
LIQUID FEC HAMMING74 4/7 9.15 7.79 Hamming (7,4) block code
LIQUID FEC HAMMING84 1/2 9.63 7.38 Hamming (7,4) with extra parity bit
LIQUID FEC HAMMING128 2/3 8.82 8.13 Hamming (12,8) block code
LIQUID FEC GOLAY2412 1/2 7.46 - Golay (24,12) block code
LIQUID FEC SECDED2216 2/3 8.84 - SEC-DED (22,16) block code
LIQUID FEC SECDED3932 4/5 8.29 - SEC-DED (39,32) block code
LIQUID FEC SECDED7264 8/9 8.05 - SEC-DED (72,64) block code

Convolutional Codes (Unpunctured)

LIQUID FEC CONV V27 1/2 6.44 4.29 K = 7, dfree = 10
LIQUID FEC CONV V29 1/2 5.79 3.78 K = 9, dfree = 12
LIQUID FEC CONV V39 1/3 5.41 3.59 K = 9, dfree = 18
LIQUID FEC CONV V615 1/6 3.81 2.00 K = 15, dfree ≤ 57 (Heller 1968)

Convolutional Codes (Punctured)

LIQUID FEC CONV V27P23 2/3 6.86 4.65 K = 7, dfree = 6
LIQUID FEC CONV V27P34 3/4 7.33 5.29 K = 7, dfree = 5
LIQUID FEC CONV V27P45 4/5 7.73 5.50 K = 7, dfree = 4
LIQUID FEC CONV V27P56 5/6 8.35 5.72 K = 7, dfree = 4
LIQUID FEC CONV V27P67 6/7 8.21 5.91 K = 7, dfree = 3
LIQUID FEC CONV V27P78 7/8 8.38 5.97 K = 7, dfree = 3

LIQUID FEC CONV V29P23 2/3 6.38 4.36 K = 9, dfree = 7
LIQUID FEC CONV V29P34 3/4 6.72 4.78 K = 9, dfree = 6
LIQUID FEC CONV V29P45 4/5 7.60 4.95 K = 9, dfree = 5
LIQUID FEC CONV V29P56 5/6 7.69 5.72 K = 9, dfree = 5
LIQUID FEC CONV V29P67 6/7 8.93 6.92 K = 9, dfree = 4
LIQUID FEC CONV V29P78 7/8 7.87 6.03 K = 9, dfree = 4

Reed-Solomon Codes

LIQUID FEC RS M8 223/255 6.04 - Reed-Solomon block code, m = 8

78 13 FEC (FORWARD ERROR CORRECTION)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-8 -6 -4 -2 0 2 4 6 8 10

B
E

R

Eb/N0 [dB]

hard
soft

Figure 7: Bit error-rate performance for the Hamming(8,4) codec comparing hard-decision to
soft-decision decoding.

Figure 8 depicts the performance of the available built-in liquid FEC codecs, including the
Hamming, SEC-DED, and Golay codes. Notice that in terms of Eb/N0 none of these schemes
performs extremely well, perhaps with the exception of the Golay(24,12) code which achieves a
BER of 10−5 with an Eb/N0 value of 7.46 dB.

Figure 9 depicts the performance of the convolutional codecs available in liquid when the libfec
library is installed. These include LIQUID FEC CONV V27, LIQUID FEC CONV V29, LIQUID FEC CONV V39,
and LIQUID FEC CONV V615. Notice that these codecs provide significant error-correction capabil-
ities over the Hamming codes; this is a result of the fact that convolutional encoding effectively
spreads the redundancy over a broader range of the original message, correlating the output samples
more than the short-length Hamming codes.

Figure 10 depicts the performance of the punctured convolutional codecs (K = 7) available in
liquid, also available when the libfec library is installed. These include LIQUID FEC CONV V27P23,
LIQUID FEC CONV V27P34, LIQUID FEC CONV V27P45, LIQUID FEC CONV V27P56, LIQUID FEC CONV V27P67,
and LIQUID FEC CONV V27P78. Also included is the unpunctured LIQUID FEC CONV V27 codec, plot-
ted as a reference point. liquid also includes punctured convolutional codes for the K = 9 encoder;
however because the performance is similar to the K = 7 codec its performance is omitted for the
sake of brevity.

13.8 Performance 79

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-8 -6 -4 -2 0 2 4 6 8 10

B
E

R

Eb/N0 [dB]

Uncoded
Hamming(7,4)

SEC-DED(22,16)
Hamming(12,8)

SEC-DED(39,32)
SEC-DED(72,64)

Golay(24,12)

Figure 8: Forward error-correction codec bit error rates (simulated) for built-in liquid block codecs
using BPSK modulation and hard-decision decoding.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-8 -6 -4 -2 0 2 4 6 8 10

B
E

R

Eb/N0 [dB]

Uncoded
conv. r1/2, K=7
conv. r1/2, K=9
conv. r1/3, K=9

conv. r1/6, K=15

Figure 9: Forward error-correction codec bit error rates (simulated) for convolutional codes using
BPSK modulation and hard-decision decoding.

80 14 FFT (FAST FOURIER TRANSFORM)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-8 -6 -4 -2 0 2 4 6 8 10

B
E

R

Eb/N0 [dB]

Uncoded
conv. r1/2, K=7
conv. r2/3, K=7
conv. r3/4, K=7
conv. r4/5, K=7
conv. r5/6, K=7
conv. r6/7, K=7
conv. r7/8, K=7

Figure 10: Forward error-correction codec bit error rates (simulated) for punctured convolutional
codes using BPSK modulation and hard-decision decoding.

14 fft (fast Fourier transform)

The fft module in liquid implements fast discrete Fourier transforms including forward and reverse
DFTs as well as real even/odd transforms.

14.1 Complex Transforms

Given a vector of complex time-domain samples x = [x(0), x(1), . . . , x(N − 1)]T the N -point for-
ward discrete Fourier transform is computed as:

X(k) =

N−1∑
i=0

x(i)e−j2πki/N (25)

Similarly, the inverse (reverse) discrete Fourier transform is:

x(n) =

N−1∑
i=0

X(i)ej2πni/N (26)

liquid implements only the basic decimation-in-time FFT algorithm for radix-2 transforms and the
slow DFT method otherwise. Internal methods requiring FFTs, however, will use the fftw3 library
[14] if available. The presence of fftw3.h and libfftw3 are detected by the configure script at
build time. If found, liquid will link against fftw for better performance (it is, however, the fastest

14.1 Complex Transforms 81

FFT in the west, you know). If fftw is unavailable, however, liquid will use its own, slower FFT
methods for internal processing. This eliminates libfftw as an external dependency, but takes
advantage of it when available.

Internally, liquid uses several algorithms for computing FFTs including the standard decimation-
in-time (DIT) for power-of-two transforms [44, §10-4], the Cooley-Tukey mixed-radix method for
composite transforms [24], Rader’s algorithm for prime-length transforms [38], and the DFT given
by (25) for very small values of N . The DFT requires O

(
N2
)

operations and can be slow for even
moderate sizes of N which is why it is typically reserved for small transforms. liquid’s strategy for
computing FFTs is to recursively break the transform into manageable pieces and perform the best
method for each step. For example, a transform of length N = 128 = 27 can be easily computed
using the standard DIT FFT algorithm which is computationally fast. The Cooley-Tukey algorithm
permits any factorable transform of size N = PQ to be computed with P transforms of size Q and
Q transforms of size P . For example, a transform of length N = 126 can be computed using the
Cooley-Tukey algorithm with radices P = 9 and Q = 14. Furthermore, each of these transforms
can be further split using the Cooley-Tukey algorithm (e.g. 9 = 3 · 3 and 14 = 2 · 7). The smallest
resulting transforms can finally be computed using the DFT algorithm without much penalty. For
large transforms of prime length, liquid uses Rader’s algorithm [38] which permits any transform
of prime length N to be computed using an FFT and an IFFT each of length N − 1. For example,
Rader’s algorithm can compute a 127-point transform using the 126-point Cooley-Tukey transform
(and its inverse) described above.16 Through recursion, a tranform of any size can be decomposed
into either computationally efficient DIT FFTs, or combinations of small DFTs. Consequently,
liquid can compute any transform in O

(
n log(n)

)
operations.

An example of the interface for computing complex discrete Fourier transforms is listed below.
Notice the stark similarity to libfftw3’s interface.

1 // file: doc/listings/fft.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int n=16; // input data size

7 int flags=0; // FFT flags (typically ignored)

8

9 // allocated memory arrays

10 float complex * x = (float complex*) malloc(n * sizeof(float complex));

11 float complex * y = (float complex*) malloc(n * sizeof(float complex));

12

13 // create FFT plan

14 fftplan q = fft_create_plan(n, x, y, FFT_FORWARD, flags);

15

16 // ... initialize input ...

17

18 // execute FFT (repeat as necessary)

19 fft_execute(q);

16Rader actually gives an alternate algorithm by which any transform of prime length N can be computed with an
FFT and an IFFT of any length greater than 2N − 4. For example, the 127-point FFT could also be computed using
computationally efficient 256-point DIT transforms. liquid includes both algorithms and chooses the most appropriate
one for the task.

82 14 FFT (FAST FOURIER TRANSFORM)

20

21 // destroy FFT plan and free memory arrays

22 fft_destroy_plan(q);

23 free(x);

24 free(y);

25 }

14.2 Real even/odd DFTs

liquid also implement real even/odd discrete Fourier transforms; however these are not guaranteed
to be efficient. A list of the transforms and their descriptions is given below.

14.2.1 FFT REDFT00 (DCT-I)

X(k) =
1

2

(
x(0) + (−1)kx(N − 1)

)
+
N−2∑
n=1

x(n) cos

(
π

N − 1
nk

)
(27)

14.2.2 FFT REDFT10 (DCT-II)

X(k) =
N−1∑
n=0

x(n) cos
[π
N

(n+ 0.5) k
]

(28)

14.2.3 FFT REDFT01 (DCT-III)

X(k) =
x(0)

2
+

N−1∑
n=1

x(n) cos
[π
N
n (k + 0.5)

]
(29)

14.2.4 FFT REDFT11 (DCT-IV)

X(k) =

N−1∑
n=0

x(n) cos
[π
N

(n+ 0.5) (k + 0.5)
]

(30)

14.2.5 FFT RODFT00 (DST-I)

X(k) =

N−1∑
n=0

x(n) sin

[
π

N + 1
(n+ 1)(k + 1)

]
(31)

14.2.6 FFT RODFT10 (DST-II)

X(k) =
N−1∑
n=0

x(n) sin
[π
N

(n+ 0.5)(k + 1)
]

(32)

14.3 spgram (spectral periodogram) 83

14.2.7 FFT RODFT01 (DST-III)

X(k) =
(−1)k

2
x(N − 1) +

N−2∑
n=0

x(n) sin
[π
N

(n+ 1)(k + 0.5)
]

(33)

14.2.8 FFT RODFT11 (DST-IV)

X(k) =

N−1∑
n=0

x(n) sin
[π
N

(n+ 0.5)(k + 0.5)
]

(34)

An example of the interface for computing a discrete cosine transform of type-III (FFT REDFT01)
is listed below.

1 // file: doc/listings/fft_dct.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int n=16; // input data size

7 int type = FFT_REDFT01; // DCT-III

8 int flags=0; // FFT flags (typically ignored)

9

10 // allocated memory arrays

11 float * x = (float*) malloc(n * sizeof(float));

12 float * y = (float*) malloc(n * sizeof(float));

13

14 // create FFT plan

15 fftplan q = fft_create_plan_r2r_1d(n, x, y, type, flags);

16

17 // ... initialize input ...

18

19 // execute FFT (repeat as necessary)

20 fft_execute(q);

21

22 // destroy FFT plan and free memory arrays

23 fft_destroy_plan(q);

24 free(x);

25 free(y);

26 }

14.3 spgram (spectral periodogram)

In harmonic analysis, the spectral periodogram is an estimate of the spectral density of a signal
over time. For a signal x(t), the spectral content at time t0 may be estimated over a time duration
of T seconds as

X̂t0(ω) =
1

T

∫ T

0
x(t− t0)w(t)e−jωtdt

where w(t) = 0,∀t /∈ (0, T) is a temporal windowing function to smooth transitions between
transforms. Typical windowing functions are the Hamming, Hann, and Kaiser windows (see §17.3

84 14 FFT (FAST FOURIER TRANSFORM)

time

si
gn

a
l
le
ve
l

window length

FFT length

delay

Figure 11: Spectral periodogram functionality

for a description and spectral representation of available windowing functions in liquid). Internally,
the spgram object using the Hamming window.17 For a discretely-sampled signal x(nTs), the
spectral content at time index p is

X̂p(k) =
1

N

N−1∑
i=0

x((i+ p)Ts)w(iTs)e
−j2πki/N

which is simply the N -point discrete Fourier transform of the input sequence indexed at p with a
shaping window applied. Figure 11 depicts a spectral periodogram for the discrete case in which
two overlapping transforms are taken with a delay between them. The windowing function provides
time localization at the expense of frequency resolution. Typically the length of the window is half
the size of the transform, and the delay is a quarter the size of the transform.

liquid implements a discrete spectral periodogram with the spgram object. Listed below is the
full interface to the spgram object.

spgram create(nfft,window len) creates and returns an spgram object with a transform size of
nfft samples with a window of window len samples. Internally, a Hamming window (see
§17.3.1) is used for spectral smoothing.

spgram destroy(q) destroys an spgram object, freeing all internally-allocated memory.

spgram reset(q) clears the internal spgram buffers.

spgram push(q,*x,n) pushes n samples of the array x into the internal buffer of an spgram object.

17Future development may permit the user to specify which windowing method is preferred.

14.3 spgram (spectral periodogram) 85

spgram execute(q,*X) computes the spectral periodogram output storing the result in the nfft-
point output array X. The output array is of type float complex and contain output of the
FFT.

An example of the spgram object can be found in Figure 12 in which a frequency-modulated sinusoid
is generated and analyzed. The frequency of the sinusoid changes over time and is clearly visible
in both plots.

86 14 FFT (FAST FOURIER TRANSFORM)

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000

T
im

e
 S

e
ri
e

s

Sample Index

real
imag

(a) spgram input (time series)

-0.4 -0.2 0 0.2 0.4

Normalized Frequency

 0

 10

 20

 30

 40

 50

 60

T
im

e

-120

-100

-80

-60

-40

-20

 0

(b) spgram output (time-frequency response)

Figure 12: Spectral periodogram spgram demonstration for a frequency-modulated sinuosoid.

87

15 filter

The filter module is at the core of liquid’s digital signal processing functionality. Filter design
and implementation is a significant portion of radio engineering, and consumes a considerable
portion of the baseband receiver’s energy. This section includes interface descriptions for all of the
signal processing elements in liquid regarding filter design and implementation. This includes both
infinite and finite (recursive and non-recursive) filters, decimators, interpolators, and performance
characterization.

15.1 autocorr (auto-correlator)

The autocorr family of objects implement auto-correlation of signals. The discrete auto-correlation
of a signal x is a delay, conjugate multiply, and accumulate operation defined as

rxx(n) =

N−1∑
k=0

x(n− k)x∗(n− k − d) (35)

where N is the window length, and d is the overlap delay. An example of the autocorr interface
is listed below.

1 // file: doc/listings/autocorr.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int n = 60; // autocorr window length

7 unsigned int delay = 20; // autocorr overlap delay

8

9 // create autocorrelator object

10 autocorr_cccf q = autocorr_cccf_create(n,delay);

11

12 float complex x; // input sample

13 float complex rxx; // output auto-correlation

14

15 // compute auto-correlation (repeat as necessary)

16 {

17 autocorr_cccf_push(q, x);

18 autocorr_cccf_execute(q, &rxx);

19 }

20

21 // destroy autocorrelator object

22 autocorr_cccf_destroy(q);

23 }

A more detailed example is given in examples/autocorr cccf example.c in the main liquid project
directory. Listed below is the full interface to the autocorr family of objects. While each method
is listed for autocorr cccf, the same functionality applies to autocorr rrrf.

autocorr cccf create(N,d) creates and returns an autocorr object with a window size of N
samples and a delay of d samples.

88 15 FILTER

-1

 0

 1

-20 0 20 40 60 80 100 120 140 160

R
e

a
l

Sample Index

input
decimated

-1

 0

 1

-20 0 20 40 60 80 100 120 140 160

Im
a

g

Sample Index

input
decimated

Figure 13: decim crcf (decimator) example with D = 4, compensating for filter delay.

autocorr cccf destroy(q) destroys an autocorr object, freeing all internally-allocated memory.

autocorr cccf clear(q) clears the internal autocorr buffers.

autocorr cccf print(q) prints the internal state of the autocorr object.

autocorr cccf push(q,x) pushes a sample x into the internal buffer of an autocorr object.

autocorr cccf execute(q,*rxx) executes the delay, conjugate multiply, and accumulate opera-
tion, storing the result in the output variable rxx.

autocorr cccf get energy(q) returns (1/N)
∑N−1

k=0 |x(n− k)x∗(n− k − d)|

15.2 decim (decimator)

The decim object family implements a basic interpolator with an integer output-to-input resampling
ratio D. It is essentially just a firfilt object which operates on a block of samples at a time. An
example of the decimator can be seen in Figure 13. Listed below is the full interface to the decim

family of objects. While each method is listed for decim crcf, the same functionality applies to
decim rrrf and decim cccf.

decim crcf create(D,*h,N) creates a decim object with a decimation factor D using N filter
coefficients h.

15.3 firfarrow (finite impulse response Farrow filter) 89

decim crcf create prototype(D,m,As) creates a decim object from a prototype filter with a
decimation factor D, a delay of Dm samples, and a stop-band attenuation As dB.

decim crcf create rnyquist(type,D,m,beta,dt) creates a decim object from a square-root Nyquist
prototype filter with a decimation factor D, a delay of Dm samples, an excess bandwidth
factor β, and a fractional sample delay ∆t (see §15.5.3 for details).

decim crcf destroy(q) destroys a decim object, freeing all internally-allocated memory.

decim crcf print(q) prints the parameters of a decim object to the standard output.

decim crcf clear(q) clears the internal buffer of a decim object.

decim crcf execute(q,*x,*y,k) computes the output decimation of the input sequence x (which
is D samples in size) at the index k and stores the result in y.

An example of the decim interface is listed below.

1 // file: doc/listings/decim.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int D = 4; // decimation factor

7 unsigned int h_len = 21; // filter length

8

9 // design filter and create decimator object

10 float h[h_len]; // filter coefficients

11 decim_crcf q = decim_crcf_create(D,h,h_len);

12

13 // generate input signal and decimate

14 float complex x[D]; // input samples

15 float complex y; // output sample

16

17 // run decimator (repeat as necessary)

18 {

19 decim_crcf_execute(q, x, &y, 0);

20 }

21

22 // destroy decimator object

23 decim_crcf_destroy(q);

24 }

A more detailed example is given in examples/decim crcf example.c in the main liquid project
directory.

15.3 firfarrow (finite impulse response Farrow filter)

liquid implements non-recursive Farrow filters using the firfarrow family of objects. The Farrow
structure is convenient for varying the group delay of a filter. The filter coefficients themselves are
not stored explicitly, but are represented as a set of polynomials each with an order Q. The coef-
ficients can be computed dynamically from the polynomial by arbitrarily specifying the fractional

90 15 FILTER

sample delay µ. Listed below is the full interface to the firfarrow family of objects. While each
method is listed for firfarrow crcf, the same functionality applies to firfarrow rrrf.

firfarrow crcf create(N,Q,fc,As) creates a firfarrow object with N coefficients using a poly-
nomial of order Q with a cutoff frequency fc and as stop-band attenuation of As dB.

firfarrow crcf destroy(q) destroy object, freeing all internally-allocated memory.

firfarrow crcf clear(q) clear filter internal memory buffer. This does not reset the delay.

firfarrow crcf print(q) prints the filter’s internal state to stdout.

firfarrow crcf push(q,x) push a single sample x into the filter’s internal buffer.

firfarrow crcf set delay(q,mu) set fractional delay µ of filter.

firfarrow crcf execute(q,*y) computes the output sample, storing the result in y.

firfarrow crcf get length(q) returns length of the filter (number of taps)

firfarrow crcf get coefficients(q,*h) returns the internal filter coefficients, storing the result
in the output vector h.

firfarrow crcf freqresponse(q,fc,*H) computes the complex response H of the filter at the
normalized frequency fc.

firfarrow crcf groupdelay(q,fc) returns the group delay of the filter at the normalized fre-
quency fc.

Listed below is an example of the firfarrow object’s interface.

1 // file: doc/listings/firfarrow_crcf.example.c

2 # include <liquid / liquid.h>

3

4 int main()

5 {

6 // options

7 unsigned int h_len=19; // filter length

8 unsigned int Q=5; // polynomial order

9 float fc=0.45f; // filter cutoff

10 float As=60.0f; // stop-band attenuation [dB]

11

12 // generate filter object

13 firfarrow_crcf q = firfarrow_crcf_create(h_len, Q, fc, As);

14

15 // set fractional sample delay

16 firfarrow_crcf_setdelay(q, 0.3f);

17

18 float complex x; // input sample

19 float complex y; // output sample

20

21 // execute filter (repeat as necessary)

15.4 firfilt (finite impulse response filter) 91

 8

 8.5

 9

 9.5

 10

 0 0.1 0.2 0.3 0.4 0.5

G
ro

u
p

 D
e

la
y

Normalized Frequency

mu=-0.500

mu=-0.375

mu=-0.250

mu=-0.125

mu= 0.000

mu= 0.125

mu= 0.250

mu= 0.375

mu= 0.500

Figure 14: firfarrow crcf (Farrow filter) group delay example with N = 19, Q = 5, fc = 0.45,
and As = 60 dB.

22 {

23 firfarrow_crcf_push(q, x); // push input sample

24 firfarrow_crcf_execute(q,&y); // compute output

25 }

26

27 // destroy object

28 firfarrow_crcf_destroy(q);

29 }

An example of the Farrow filter’s group delay can be found in Figure 14.

15.4 firfilt (finite impulse response filter)

Finite impulse response (FIR) filters are implemented in liquid with the firfilt family of objects.
FIR filters (also known as non-recursive filters) operate on discrete-time samples, computing the
output y as the convolution of the input x with the filter coefficients h as

y(n) =
N−1∑
k=0

h(k)x(N − k − 1) (36)

where h = [h(0), h(1), . . . , h(N − 1)] is the filter impulse response. Notice that the output sample
in (36) is simply the vector dot product (see §11) of the filter coefficients h with the time-reversed
sequence x. An example of the firfilt can be seen in Figure 15 in which a low-pass filter is

92 15 FILTER

-1

 0

 1

 0 20 40 60 80 100 120

re
a

l

Sample Index

input
filtered

-1

 0

 1

 0 20 40 60 80 100 120

im
a
g

Sample Index

input
filtered

Figure 15: firfilt crcf (finite impulse response filter) demonstration

applied to a signal to remove a high-frequency component. An example of the firfilt interface is
listed below.

1 // file: doc/listings/firfilt.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int h_len=21; // filter order

7 float h[h_len]; // filter coefficients

8

9 // ... initialize filter coefficients ...

10

11 // create filter object

12 firfilt_crcf q = firfilt_crcf_create(h,h_len);

13

14 float complex x; // input sample

15 float complex y; // output sample

16

17 // execute filter (repeat as necessary)

18 {

19 firfilt_crcf_push(q, x); // push input sample

20 firfilt_crcf_execute(q,&y); // compute output

21 }

22

15.5 firdes (finite impulse response filter design) 93

23 // destroy filter object

24 firfilt_crcf_destroy(q);

25 }

Listed below is the full interface to the firfilt family of objects. While each method is listed for
firfilt crcf, the same functionality applies to firfilt rrrf and firfilt cccf.

firfilt crcf create(*h,N) creates a firfilt object with N filter coefficients h.

firfilt crcf recreate(q,*h,N) re-creates a firfilt object q with N filter coefficients h; if the
length of the filter doesn’t change, the internal state is preserved.

firfilt crcf destroy(q) destroys a firfilt object, freeing all internally-allocated memory.

firfilt crcf print(q) prints the parameters of a firfilt object to the standard output.

firfilt crcf clear(q) clears the internal buffer of a firfilt object.

firfilt crcf push(q,x) pushes an input sample x into the internal buffer of the filter object.

firfilt crcf execute(q,*y) generates the output sample y by computing the vector dot product
(see §11) between the internal filter coefficients and the internal buffer.

firfilt crcf get length(q) returns the length of the filter.

firfilt crcf freqresponse(q,fc,*H) returns the response of the filter at the frequency fc,
stored in the pointer H.

firfilt crcf groupdelay(q,fc) returns the group delay of the filter at the frequency fc.

15.5 firdes (finite impulse response filter design)

This section describes the finite impulse response filter design capabilities in liquid. This includes
basic low-pass filter design using the windowed-sinc method, square-root Nyquist filters, arbitrary
design using the Parks-McClellan algorithm, and some useful miscellaneous functions.

15.5.1 Window prototype

The ideal low-pass filter has a rectangular response in the frequency domain and an infinite sin(t)/t
response in the time domain. Because all time-dependent filters must be causal, this type of filter
is unrealizable; furthermore, truncating its response results in poor pass-band ripple stop-band
rejection. An improvement over truncation is offered by use of a band-limiting window. Let the
finite impulse response of a filter be defined as

h(n) = hi(n)w(n) (37)

where w(n) is a time-limited symmetric window and hi(n) is the impulse response of the ideal filter
with a cutoff frequency ωc, viz.

hi(n) =
ωc
π

(
sinωcn

ωcn

)
, ∀n (38)

94 15 FILTER

A number of possible windows could be used; the Kaiser window is particularly common due to
its systematic ability to trade transition bandwidth for stop-band rejection. The Kaiser window is
defined as

w(n) =

I0

[
πα

√
1−

(
n
N/2

)2
]

I0 (πα)
−N/2 ≤ n ≤ N/2, α ≥ 0 (39)

where Iν(z) is the modified Bessel function of the first kind of order ν and α is a shape parameter
controlling the window decay. Iν(z) can be expanded as

Iν(z) =
(z

2

)ν ∞∑
k=0

(
1
4z

2
)k

k!Γ(k + ν + 1)
(40)

The sum in (40) converges quickly due to the denominator increasing rapidly, (and in particular
for ν = 0 the denominator reduces to (k!)2) and thus only a few terms are necessary for sufficient
approximation. The sum (40) converges quickly due to the denominator increasing rapidly, thus
only a few terms are necessary for sufficient approximation. For more approximations to I0(z) and
Iν(z), see §17 in the math module. Kaiser gives an approximation for the value of α to give a
particular sidelobe level for the window as [42, (3.2.7)]

α =

0.1102(As − 8.7) As > 50

0.5842(As − 21)0.4 21 < As ≤ 50

0 else

(41)

where As > 0 is the stop-band attenuation in decibels. This approximation is provided in liq-
uid by the kaiser beta As() method, and the length of the filter can be approximated with
estimate req filter len() (see §15.5.6 for more detail on these methods).

The entire design process is provided in liquid with the firdes kaiser window() method which
can be invoked as follows:

liquid_firdes_kaiser(_n, _fc, _As, _mu, *_h)

where n is the length of the filter (number of samples), fc is the normalized cutoff frequency
(0 ≤ fc ≤ 0.5), As is the stop-band attenuation in dB (As > 0), mu is the fractional sample offset
(−0.5 ≤ µ ≤ 0.5), and * h is the n-sample output coefficient array. Listed below is an example of
the firdes kaiser window interface.

1 // file: doc/listings/firdes_kaiser.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 float fc=0.15f; // filter cutoff frequency

7 float ft=0.05f; // filter transition

8 float As=60.0f; // stop-band attenuation [dB]

9 float mu=0.0f; // fractional timing offset

10

11 // estimate required filter length and generate filter

15.5 firdes (finite impulse response filter design) 95

Table 5: Nyquist filter prototypes available in liquid

scheme description

LIQUID NYQUIST KAISER Kaiser filter
LIQUID NYQUIST PM Parks-McClellan algorithm
LIQUID NYQUIST RCOS raised cosine
LIQUID NYQUIST FEXP flipped exponential [2]
LIQUID NYQUIST FSECH flipped hyperbolic secant [1]
LIQUID NYQUIST FARCSECH flipped hyperbolic arc-secant [1]

12 unsigned int h_len = estimate_req_filter_len(ft,As);

13 float h[h_len];

14 liquid_firdes_kaiser(h_len,fc,As,mu,h);

15 }

An example of a low-pass filter design using the Kaiser window can be found in Figure 16.

15.5.2 liquid firdes nyquist() (Nyquist filter design)

Nyquist’s criteria for designing a band-limited filter without inter-symbol interference is for the
spectral response of a linear phase filter to be symmetric about its symbol rate. liquid provides
several Nyquist filters as design prototypes and are listed in Table 5. The interface for designing
Nyquist filters is simply

liquid_firdes_nyquist(_ftype, _k, _m, _beta, _dt, *h);

where ftype is one of the filter types in Table 5, k is the number of samples per symbol, m is the
filter delay in symbols, β is the excess bandwidth (rolloff) factor, ∆t is the fractional sample delay
(usually set to zero for typical filter designs and is ignored in the LIQUID NYQUIST PM design), and
h is the output coefficients array of length 2km+ 1.

15.5.3 liquid firdes rnyquist() (square-root Nyquist filter design)

Square-root Nyquist filters are commonly used in digital communications systems with linear mod-
ulation as a pulse shape for matched filtering. Applying a pulse shape to the transmitted symbol
sequence limits its occupied spectral bandwidth by smoothing the transitions between symbols. If
an identical filter is applied at the receiver then the system is matched resulting in the maximum
signal-to-noise ratio and (theoretically) zero inter-symbol interference. While the design of Nyquist
filters is trivial and can be accomplished by applying any desired window to a sinc function, de-
signing a square-root Nyquist filter is not as straightforward. liquid conveniently provides several
square-root Nyquist filter prototypes listed in Table 6. The interface for designing square-root
Nyquist filters is simply

liquid_firdes_rnyquist(_ftype, _k, _m, _beta, _dt, *h);

where ftype is one of the filter types in Table 6, k is the number of samples per symbol, m is
the filter delay in symbols, β is the excess bandwidth (rolloff) factor, ∆t is the fractional sample

96 15 FILTER

 0

 1

 0 10 20 30 40 50 60 70

s
in

c
,

w
in

d
o

w

Sample Index

sinc
Kaiser window

 0

 1

 0 10 20 30 40 50 60 70

fi
lt
e

r

Sample Index

composite

(a) time

-100

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

(b) PSD

Figure 16: firdes kaiser window() demonstration, fc = 0.15, ∆f = 0.05, As = 60dB

15.5 firdes (finite impulse response filter design) 97

Table 6: Square-root Nyquist filter prototypes available in liquid

scheme description

LIQUID RNYQUIST ARKAISER approximate r-Kaiser
LIQUID RNYQUIST RKAISER r-Kaiser
LIQUID RNYQUIST RRCOS square-root raised cosine
LIQUID RNYQUIST hM3 harris-Moerder type 3 [13]
LIQUID RNYQUIST GMSTX GMSK transmit filter [35]
LIQUID RNYQUIST GMSRX GMSK receive filter
LIQUID RNYQUIST FEXP flipped exponential [2]
LIQUID RNYQUIST FSECH flipped hyperbolic secant [1]
LIQUID RNYQUIST FARCSECH flipped hyperbolic arc-secant [1]

delay (usually set to zero for typical filter designs), and h is the output coefficients array of length
2km+ 1. All square-root Nyquist filters in liquid have these four basic properties (k, m, β, ∆t) and
produce a filter with N = 2km+ 1 coefficients.

The most common square-root Nyquist filter design in digital communications is the square-
root raised-cosine (RRC) filter, likely due to the fact that an expression for its time series can be
expressed in closed form. The filter coefficients themselves are derived from the following equation:

h [z] = 4β
cos [(1 + β)πz] + sin [(1− β)πz] /(4βz)

π
√
T [1− 16β2z2]

(42)

where z = n/k −m, and T = 1 for most cases. liquid compensates for the two cases where h[n]
might be undefined in the above equation, i.e.

lim
z→0

h(z) = 1− β + 4β/π (43)

and

lim
z→± 1

4β

h(z) =
β√
2

[(
1 +

2

π

)
sin

(
π

4β

)
+

(
1− 2

π

)
cos

(
π

4β

)]
(44)

The r-Kaiser and harris-Moerder-3 (hM3) filters cannot be expressed in closed form but rely
on iterations over traditional filter design techniques to search for the design parameters which
minimize the resulting filter’s inter-symbol interference (ISI). Similarly the approximate r-Kaiser
filter uses an approximation for the design parameters to eliminate the need for running the search;
this comes at the expense of a slight performance degradation.

Figure 17 contrasts the different square-root Nyquist filters available in liquid. The square-root
raised-cosine filter is inferior to the (approximate) r-Kaiser and harris-Moerder-3 filters in both
transition bandwidth as well as side-lobe suppression. In the figure the responses of the r-Kaiser
and approximate r-Kaiser filters are indistinguishable.

98 15 FILTER

-120

-100

-80

-60

-40

-20

 0

 20

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e
r

S
p

e
c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

ARKAISER
RKAISER

RRC
hM3

Figure 17: Contrast of the different square-root Nyquist filters available in liquid for k = 2,
m = 9, β = 0.3, and ∆t = 0.

15.5 firdes (finite impulse response filter design) 99

15.5.4 GMSK Filter Design

The transmit filter for a GMSK modem with a bandwidth-time product BT (equivalent to the
excess bandwidth factor β) is defined as

ht(t) = Q

(
2πBT√

ln(2)

(
t− 1

2

))
−Q

(
2πBT√

ln(2)

(
t+

1

2

))
(45)

where Q(z) = 1
2

(
1− erf(z/

√
2)
)

(see §17.1.10). The transmit filter imparts inter-symbol interfer-
ence, leaving the receiver to compensate. liquid implements a GMSK receive filter by minimizing
the inter-symbol interference of the composite, and as such there is no closed-form solution for the
GMSK receive filter. Figure 18 depicts the transmit, receive, and composite filters in both the
time and frequency domains. Notice that the frequency response of the receive filter has a gain
in the pass-band (around f = 0.13) to compensate for the ISI imparted by the transmit filter.
Consequently the composite filter has nearly zero ISI, as can be seen by its flat pass-band response
and transition through 20 log10

(
1
2

)
.

15.5.5 firdespm (Parks-McClellan algorithm)

FIR filter design using the Parks-McClellan algorithm is implemented in liquid with the firdespm

interface. The Parks-McClellan algorithm uses the Remez exchange algorithm to solve the minimax
problem (minimize the maximum error) for filter design. The interface accepts a description of Nb

disjoint and non-overlapping frequency bands with a desired response and relative error weighting
for each, and computes the resulting filter coefficients.

firdespm_run(_h_len, // filter length

_bands*, // array of frequency bands

_des*, // desired response in each band

_weights*, // relative weighting for each band

_num_bands, // number of bands

_btype, // filter type

_wtype*, // weighting function for each band

_h*)

bands is a [Nb × 2] matrix of the band edge descriptions. Each row corresponds to an upper and
lower band edge for each region of interest. These regions cannot be overlapping.

des is an array of size Nb with the desired response (linear) for each band.

weights is an array of size Nb with the relative error weighting for each band.

num bands represents Nb, the number of bands in the design.

btype gives the filter type for the design. This is typically LIQUID FIRDESPM BANDPASS for the
majority of filters.

wtype is an array of length Nb which specifies the weighting function for each band (flat, expo-
nential, or linear).

Listed below is an example of the firdespm interface.

100 15 FILTER

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-4 -2 0 2 4

T
ra

n
s
m

it
/R

e
c
e

iv
e

Time [t/T]

Transmit
Receive

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

C
o

m
p
o

s
it
e

Time [t/T]

Composite

(a) time

-100

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n
s
it
y
 [

d
B

]

Normalized Frequency

Transmit
Receive

Composite

(b) PSD

Figure 18: liquid firdes gmskrx() demonstration, k = 4 samples/symbol, m = 5 symbols,
BT= 0.3

15.5 firdes (finite impulse response filter design) 101

1 // file: doc/listings/firdespm.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // define filter length, type, number of bands

6 unsigned int n=55;

7 liquid_firdespm_btype btype = LIQUID_FIRDESPM_BANDPASS;

8 unsigned int num_bands = 4;

9

10 // band edge description [size: num_bands x 2]

11 float bands[8] = {0.0f, 0.1f, // 1 first pass-band

12 0.15f, 0.3f, // 0 first stop-band

13 0.33f, 0.4f, // 0.1 second pass-band

14 0.42f, 0.5f}; // 0 second stop-band

15

16 // desired response [size: num_bands x 1]

17 float des[4] = {1.0f, 0.0f, 0.1f, 0.0f};

18

19 // relative weights [size: num_bands x 1]

20 float weights[4] = {1.0f, 1.0f, 1.0f, 1.0f};

21

22 // in-band weighting functions [size: num_bands x 1]

23 liquid_firdespm_wtype wtype[4] = {LIQUID_FIRDESPM_FLATWEIGHT,

24 LIQUID_FIRDESPM_EXPWEIGHT,

25 LIQUID_FIRDESPM_EXPWEIGHT,

26 LIQUID_FIRDESPM_EXPWEIGHT};

27

28 // allocate memory for array and design filter

29 float h[n];

30 firdespm_run(n,num_bands,bands,des,weights,wtype,btype,h);

31 }

15.5.6 Miscellaneous functions

Here are several miscellaneous functions used in liquid’s filter module, useful to filtering and filter
design.

estimate req filter len(df,As) returns an estimate of the required filter length, given a tran-
sition bandwidth ∆f and stop-band attenuation As. The estimate uses Kaiser’s formula
[42]

N ≈ As − 7.95

14.26∆f
(46)

estimate req filter As(df,N) returns an estimate of the filter’s stop-band attenuation As given
the filter’s length N and transition bandwidth ∆f . The estimate uses an iterative binary
search to find As from estimate req filter As().

estimate req filter df(As,N) returns an estimate of the filter’s transition bandwidth ∆f given
the filter’s length N and stop-band attenuation As. The estimate uses an iterative binary
search to find ∆f from estimate req filter As().

102 15 FILTER

 0

 0.1

 0.2

-30 -20 -10 0 10 20 30

Im
p

u
ls

e
 R

e
s
p

o
n

s
e

Sample Index

-80

-60

-40

-20

 0

 20

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e
r

S
p

e
c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

Figure 19: firdespm multiple pass-band filter design demonstration

kaiser beta As(As) returns an estimate of the Kaiser β factor for a particular stop-band attenu-
ation As. The estimate uses Kaiser’s original formula [42], viz

β =

0.1102(As − 8.7) As > 50

0.5842(As − 21)0.4 21 < As ≤ 50

0 else

(47)

fir group delay(*h,n,f) computes the group delay for a finite impulse-response filter with n
coefficients h at a frequency f . The group delay τg at frequency f for a finite impulse
response filter of length N is computed as

τg = <
{ ∑N−1

k=0 h(k)ej2πfk · k∑N−1
k=0 h(k)ej2πfk

}
(48)

iir group delay(*b,nb,*a,na,f) computes the group delay for an infinite impulse-response filter
with na feed-back coefficients a, and nb feed-forward coefficients b at a frequency f . The group
delay τg at frequency f for an infinite impulse response filter of order N is computed as

τg = <
{ ∑2(N+1)

k=0 c(k)ej2πfk · k∑2(N+1)
k=0 c(k)ej2πfk

}
−N (49)

where c(n) =
∑N−1

m=0 a
∗(m)b(m− n) for n ∈ {0, 1, . . . , 2(N + 1)} which can be described as

the flipped convolution of a and b.

15.6 firhilbf (finite impulse response Hilbert transform) 103

iirdes isstable(*b,*a,n) checks the stability of an infinite impulse-response filter with n feed-
back and feed-forward coefficients a and b respectively. Stability is tested by computing the
roots of the denominator (poles) and ensuring that they lie within the unit circle. Notice that
the poles in Figures 23–27 all have their poles within the unit circle and are therefore stable
(as expected).

liquid filter autocorr(*h,N,n) computes the auto-correlation of a filter with an array of co-
efficients h of length N at a specific lag n as

rhh(n) =

N−1∑
k=n

h(k)h∗(k − n) (50)

liquid filter isi(*h,k,m,*rms,*max) computes the inter-symbol interference (both mean-squared
error and maximum error) for a filter h with k samples per symbol and delay of m samples.
The filter has 2km+1 coefficients and the resulting RMS and maximum ISI are stored in rms

and max, respectively. This is useful in comparing the performance of root-Nyquist matched
filter designs (e.g. root raised-cosine).

liquid filter energy(*h,N,fc,nfft) computes the relative out-of-band energy E0 at a cutoff
frequency fc for a finite impulse response filter h with N coefficients. The parameter nfft

specifies the precision of the computation. The relative out-of-band energy is computed as

E0 =

∫∞
2πfc

H(ω)dω∫∞
0 H(ω)dω

(51)

15.6 firhilbf (finite impulse response Hilbert transform)

The firhilbf object in liquid implements a finite impulse response Hilbert transform which con-
verts between real and complex time series. The interpolator takes a complex time series and
produces real-valued samples at twice the sample rate. The decimator reverses the process by
halving the sample rate of a real-valued time series to a complex-valued one.

Typical trade-offs between filter length, side-lobe suppression, and transition bandwidth apply.
The firhilbf object uses a half-band filter to implement the transform as efficiently as possible.
While any filter length can be accepted, the firhilbf object internally forces the length to be of
the form n = 4m + 1 to reduce the computational load. A half-band filter of this length has 2m
zeros and 2m+ 1 non-zero coefficients. Of these non-zero coefficients, the center is exactly 1 while
the other 2m are even symmetric, and therefore only m computations are needed. A graphical
example of the Hilbert decimator can be seen in Figure 20 where a real-valued input sinusoid is
converted into a complex sinusoid with half the number of samples. An example code listing is given
below. Although firhilbf is a placeholder for both decimation (real to complex) and interpolation
(complex to real), separate objects should be used for each task.

1 // file: doc/listings/firhilb.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 unsigned int m=5; // filter semi-length

104 15 FILTER

-1

 0

 1

 0 50 100 150 200

re
a

l

Sample Index

real

-1

 0

 1

 0 20 40 60 80 100

c
o

m
p

le
x

Sample Index

real
imag

(a) time

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n
s
it
y
 [

d
B

]

Normalized Frequency

original/real
transformed/decimated

(b) PSD

Figure 20: firhilbf (Hilbert transform) decimator demonstration. The small signal at f = 0.13
is due to aliasing as a result of imperfect image rejection.

15.6 firhilbf (finite impulse response Hilbert transform) 105

6 float slsl=60.0f; // filter sidelobe suppression level

7

8 // create Hilbert transform objects

9 firhilbf q0 = firhilbf_create(m,slsl);

10 firhilbf q1 = firhilbf_create(m,slsl);

11

12 float complex x; // interpolator input

13 float y[2]; // interpolator output

14 float complex z; // decimator output

15

16 // ...

17

18 // execute transforms

19 firhilbf_interp_execute(q0, x, y); // interpolator

20 firhilbf_decim_execute(q1, y, &z); // decimator

21

22 // clean up allocated memory

23 firhilbf_destroy(q0);

24 firhilbf_destroy(q1);

25 }

Listed below is the full interface to the firhilbf family of objects.

firhilbf create(m,As) creates a firhilbf object with a filter semi-length of m samples (equal to
the delay) and a stop-band attenuation of As dB. The value of m must be at least 2. The inter-
nal filter has a length 4m+ 1 coefficients and is designed using the firdes kaiser window()

method (see §15.5.1 on FIR filter design using windowing functions).

firhilbf destroy(q) destroys the Hilbert transform object, freeing all internally-allocated mem-
ory.

firhilbf print(q) prints the internal properties of the object to the standard output.

firhilbf clear(q) clears the internal transform buffers.

firhilbf r2c execute(q,x,*y) executes the real-to-complex transform as a half-band filter, re-
jecting the negative frequency band. The input x is a real sample; the output y is complex.

firhilbf c2r execute(q,x,*y) executes the complex-to-real conversion as y = <{x}.

firhilbf decim execute(q,*x,*y) executes the transform as a decimator, converting a 2-sample
input array x of real values into a single complex output value y.

firhilbf interp execute(q,x,*y) executes the transform as a decimator, converting a single
complex input sample x into a two real-valued samples stored in the output array y.

For more detailed examples on Hilbert transforms in liquid, refer to the files examples/firhilb decim example.c

and examples/firhilb interp example.c located within the main liquid project directory. See
also: resamp2 (§15.11), FIR filter design (§15.5).

106 15 FILTER

15.7 iirfilt (infinite impulse response filter)

The iirfilt crcf object and family implement the infinite impulse response (IIR) filters. Also
known as recursive filters, IIR filters allow a portion of the output to be fed back into the input,
thus creating an impulse response which is non-zero for an infinite amount of time. Formally, the
output signal y[n] may be written in terms of the input signal x[n] as

y[n] =
1

a0

nb−1∑
j=0

bjx[n− j]−
na−1∑
k=1

aky[n− k]

 (52)

where b = [b0, b1, . . . , bnb−1]T are the feed-forward parameters and a = [a0, a1, . . . , ana−1]T are the
feed-back parameters of length nb and na, respectively. The z-transform of the transfer function is
therefore

H(z) =
Y (z)

X(z)
=

nb−1∑
j=0

bjz
−j

na−1∑
k=0

akz−k
=

b0 + b1z
−1 + · · ·+ bnb−1z

nb−1

a0 + a1z−1 + · · ·+ ana−1zna−1
(53)

Typically the coefficients in H(z) are normalized such that a0 = 1.
For larger order filters (even as small as n ≈ 8) the filter can become unstable due to finite

machine precision. It is often therefore useful to express H(z) in terms of second-order sections.
For a filter of order n, these sections are denoted by the two (L+ r)× 3 matrices B and A where
r = n mod 2 (0 for odd n, 1 for even n) and L = (n− r)/2.

Hd(z) =

[
Br,0 +Br,1z

−1

1 +Ar,1z−1

]r L∏
k=1

[
Bk,0 +Bk,1z

−1 +Bk,2z
−2

1 +Ak,1z−1 +Ak,2z−2

]
(54)

Notice that H(z) is now a series of cascaded second-order IIR filters. The ‘sos’ form is practical
when filters are designed from analog prototypes where the poles and zeros are known. liquid
implements second-order sections efficiently with the internal iirfiltsos crcf family of objects.
For a cascaded second-order section IIR filter, use iirfilt crcf create sos(B,A,n). See also:
iirdes (IIR filter design) in §15.8.

Listed below is the full interface to the iirfilt family of objects. The interface to the iirfilt

object follows the convention of other liquid signal processing objects; while each method is listed
for iirfilt crcf, the same functionality applies to iirfilt rrrf and iirfilt cccf.

iirfilt crcf create(*b,Nb,*a,Nb) creates a new iirfilt object with Nb feed-forward coeffi-
cients b and Na feed-back coefficients a.

iirfilt crcf create sos(*B,*A,Nsos) creates a new iirfilt object using Nsos second-order
sections. The [Nsos × 3] feed-forward coefficient matrix is specified by B and the [Nsos × 3]
feed-back coefficient matrix is specified by A.

iirfilt crcf create prototype(ftype,btype,format,order,fc,f0,Ap,As) creates a new IIR
filter object using the prototype interface described in §15.8.1. This is the simplest method
for designing an IIR filter with Butterworth, Chebyshev-I, Chebyshev-II, elliptic/Cauer, or
Bessel coefficients.

15.7 iirfilt (infinite impulse response filter) 107

iirfilt crcf destroy(q) destroys an iirfilt object, freeing all internally-allocated memory
arrays and buffers.

iirfilt crcf print(q) prints the internals of an iirfilt object.

iirfilt crcf clear(q) clears the filter’s internal state.

iirfilt crcf execute(q,x,*y) executes one iteration of the filter with an input x, storing the
result in y, and updating its internal state.

iirfilt crcf get length(q) returns the order of the filter.

iirfilt crcf freqresponse(q,fc,*H) computes the complex response H of the filter at the nor-
malized frequency fc.

iirfilt crcf groupdelay(q,fc) returns the group delay of the filter at the normalized frequency
fc.

Listed below is a basic example of the interface. For more detailed and extensive examples, refer
to examples/iirfilt crcf example.c in the main liquid project source directory.

1 // file: doc/listings/iirfilt.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int order=4; // filter order

7

8 unsigned int n = order+1;

9 float b[n], a[n];

10

11 // ... initialize filter coefficients ...

12

13 // create filter object

14 iirfilt_crcf q = iirfilt_crcf_create(b,n,a,n);

15

16 float complex x; // input sample

17 float complex y; // output sample

18

19 // execute filter (repeat as necessary)

20 iirfilt_crcf_execute(q,x,&y);

21

22 // destroy filter object

23 iirfilt_crcf_destroy(q);

24 }

An example of the iirfilt can be seen in Figure 21 in which a low-pass filter is applied to a signal
to remove a high-frequency component.

108 15 FILTER

-1

 0

 1

 0 20 40 60 80 100 120

re
a

l

Sample Index

input
filtered

-1

 0

 1

 0 20 40 60 80 100 120

im
a
g

Sample Index

input
filtered

Figure 21: iirfilt crcf (infinite impulse response filter) example.

15.8 iirdes (infinite impulse response filter design)

liquid implements infinite impulse response (IIR) filter design for the five major classes of filters
(Butterworth, Chebyshev type-I, Chebyshev type-II, elliptic, and Bessel) by first computing their
analog low-pass prototypes, performing a bilinear z-transform to convert to the digital domain,
then transforming to the appropriate band type (e.g. high pass) if necessary. Externally, the
user may abstract the entire process by using the liquid iirdes() method. Furthermore, if
the end result is to create a filter object as opposed to computing the coefficients themselves, the
iirfilt crcf create prototype() method can be used to generate the object directly (see §15.7).

15.8.1 liquid iirdes(), the simplified method

The liquid iirdes() method designs an IIR filter’s coefficients from one of the four major types
(Butterworth, Chebyshev, elliptic/Cauer, and Bessel) with as minimal an interface as possible.
The user specifies the filter prototype, order, cutoff frequency, and other parameters as well as the
resulting filter structure (regular or second-order sections), and the function returns the appropriate
filter coefficients that meet that design. Specifically, the interface is

liquid_iirdes(_ftype, _btype, _format, _n, _fc, _f0, _Ap, _As, *_B, *_A);

ftype is the analog filter prototype, e.g. LIQUID IIRDES BUTTER

btype is the band type, e.g. LIQUID IIRDES BANDPASS

15.8 iirdes (infinite impulse response filter design) 109

format is the output format of the coefficients, e.g. LIQUID IIRDES SOS

n is the filter order

fc is the normalized cutoff frequency of the analog prototype

f0 is the normalized center frequency of the analog prototype (only applicable to bandpass and
band-stop filter designs, ignored for low-pass and high-pass filter designs)

Ap is the pass-band ripple (only applicable to Chebyshev Type-I and elliptic filter designs, ignored
for Butterworth, Chebyshev Type-II, and Bessel designs)

As is the stop-band ripple (only applicable to Chebyshev Type-II and elliptic filter designs, ignored
for Butterworth, Chebyshev Type-I, and Bessel designs)

B, A are the output feed-forward (numerator) and feed-back (denominator) coefficients, respec-
tively. The format and size of these arrays depends on the value of the format and btype

parameters. To compute the specific lengths of the arrays, first define the effective filter order
N which is the same as the specified filter order for low- and high- pass filters, and doubled for
band-pass and band-stop filters. If the the format is LIQUID IIRDES TF (the regular transfer
function format) then the size of B and A is simply N . If, on the other hand, the format is
LIQUID IIRDES SOS (second-order sections format) then a few extra steps are needed: define
r as 0 when N is even and 1 when N is odd, and define L as (N − r)/2. The sizes of B and
A for the second-order sections case are each 3(L+ r).

As an example, the following example designs a 5th-order elliptic band-pass filter with 1 dB ripple
in the passband, 60 dB ripple in the stop-band, a cut-off frequency of fc/Fs = 0.2 and a center
frequency f0/Fs = 0.25; the frequency response of the resulting filter can be found in Figure 22.

1 // file: doc/listings/iirdes.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int order=5; // filter order

7 float fc = 0.20f; // cutoff frequency (low-pass prototype)

8 float f0 = 0.25f; // center frequency (band-pass, band-stop)

9 float As = 60.0f; // stopband attenuation [dB]

10 float Ap = 1.0f; // passband ripple [dB]

11

12 // derived values

13 unsigned int N = 2*order; // effective order (double because band-pass)

14 unsigned int r = N % 2; // odd/even order

15 unsigned int L = (N-r)/2; // filter semi-length

16

17 // filter coefficients arrays

18 float B[3*(L+r)];

19 float A[3*(L+r)];

20

21 // design filter

110 15 FILTER

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

Figure 22: Example of the iirdes interface, designing a 5th-order elliptic band-pass filter with
1 dB ripple in the passband, 60 dB ripple in the stop-band, a cut-off frequency of fc/Fs = 0.2 and
a center frequency f0/Fs = 0.25

22 liquid_iirdes(LIQUID_IIRDES_ELLIP,

23 LIQUID_IIRDES_BANDPASS,

24 LIQUID_IIRDES_SOS,

25 order,

26 fc, f0, Ap, As,

27 B, A);

28

29 // print results

30 unsigned int i;

31 printf("B [%u x 3] :\n", L+r);

32 for (i=0; i<L+r; i++)

33 printf(" %12.8f %12.8f %12.8f\n", B[3*i+0], B[3*i+1], B[3*i+2]);

34 printf("A [%u x 3] :\n", L+r);

35 for (i=0; i<L+r; i++)

36 printf(" %12.8f %12.8f %12.8f\n", A[3*i+0], A[3*i+1], A[3*i+2]);

37 }

15.8.2 internal description

While the user only needs to specify the filter parameters, the internal procedure for computing
the coefficients is somewhat complicated. Listed below is the step-by-step process for liquid’s IIR
filter design procedure.

15.8 iirdes (infinite impulse response filter design) 111

1. Use butterf(), cheby1f(), cheby2f(), ellipf(), besself() to design a low-pass analog
prototype Ha(s) in terms of complex zeros, poles, and gain. The azpkf extension stands for
“analog zeros, poles, gain (floating-point).”

butter azpkf() Butterworth (maximally flat in the pass-band)

cheby1 azpkf() Chebyshev Type-I (equiripple in the pass-band)

cheby2 azpkf() Chebyshev Type-II (equiripple in the stop-band)

ellip azpkf() elliptic filter (equiripple in the pass- and stop-bands)

bessel azpkf() Bessel (maximally flat group delay)

2. Compute frequency pre-warping factor, m, to set cutoff frequency (and center frequency if
designing a band-pass or band-stop filter) using the iirdes freqprewarp() method.

3. Convert the low-pass analog prototype Ha(s) to its digital equivalent Hd(z) (also in terms
of zeros, poles, and gain) using the bilinear z-transform using the bilinear zpkf() method.
This maps the analog zeros/poles/gain into digital zeros/poles/gain.

4. Transform the low-pass digital prototype to high-pass, band-pass, or band-stop using the
iirdes dzpk lp2bp() method. For the band-pass and band-stop cases, the number of poles
and zeros will need to be doubled.

LP low-pass filter : s = m(1 + z−1)/(1− z−1)

HP high-pass filter : s = m(1− z−1)/(1 + z−1)

BP band-pass filter : s = m(1− c0z
−1 + z−2)/(1− z−2)

BS band-stop filter : s = m(1− z−2)/(1− c0z
−1 + z−2)

5. Transform the digital z/p/k form of the filter to one of the two forms:

TF typical transfer function for digital iir filters of the form B(z)/A(z), iirdes dzpk2tff()

SOS second-order sections form :
∏
k Bk(z)/Ak(z), iirdes dzpk2sosf(). This is the pre-

ferred method.

A simplified example for this procedure is given in examples/iirdes example.c.

15.8.3 Available Filter Types

There are currently five low-pass prototypes available for infinite impulse response filter design in
liquid, as described below:

LIQUID IIRDES BUTTER is a Butterworth filter. This is an all-pole analog design that has a maxi-
mally flat magnitude response in the pass-band. The analog prototype interface is butter azpkf()

which computes the n complex roots pa0, pa1, . . . , pan−1 of the nth-order Butterworth polyno-
mial,

pak = ωc exp

{
j

(2k + n+ 1)π

2n

}
(55)

for k = 0, 1, . . . , n − 1. Note that this results in a set of complex conjugate pairs such that
(−1)ns0s1 · · · sn−1 = 1. An example of a digital filter response can be found in Figure 23;

112 15 FILTER

LIQUID IIRDES CHEBY1 is a Chebyshev Type-I filter. This design uses Chebyshev polynomials to
create a filter with a sharper transition band than the Butterworth design by allowing ripples
in the pass-band. The analog prototype interface is cheby1 azpkf() which computes the
n complex roots pak of the nth-order Chebyshev polynomial. An example of a digital filter
response can be found in Figure 24;

LIQUID IIRDES CHEBY2 is a Chebyshev Type-II filter. This design is similar to that of Chebyshev
Type-I, except that the Chebyshev polynomial is inverted. This inverts the magnitude re-
sponse of the filter and exhibits an equiripple behavior in the stop-band, rather than the
pass-band. The analog prototype interface is cheby2 azpkf(). An example of a digital filter
response can be found in Figure 25

LIQUID IIRDES ELLIP is an elliptic (Cauer) filter. This design allows ripples in both the pass-
band and stop-bands to create a filter with a very sharp transition band. The design process
is somewhat more involved than the Butterworth and Chebyshev prototypes and requires
solving the elliptic integral of different moduli. For a more detailed description we refer the
interested reader to [32]. The analog prototype interface is ellip azpkf(). An example of a
digital filter response can be found in Figure 26;

LIQUID IIRDES BESSEL is a Bessel filter. This is an all-pole analog design that has a maximally
flat group delay response (maximally linear phase response). The solution to the design
happens to be the roots to the Bessel polynomials of equal order. Computing the roots to
the polynomial is, again, somewhat complex. For a more detailed description we refer the
interested reader to [31]. The analog prototype interface is bessel azpkf(). An example of
a digital filter response can be found in Figure 27.

15.8.4 bilinear zpkf (Bilinear z-transform)

The bilinear z-transform converts an analog prototype to its digital counterpart. Given a continuous
time analog transfer function in zeros/poles/gain form (“zpk”) with nz zeros and np poles

Ha(s) = ka
(s− za0)(s− za1) · · · (s− zanz−1)

(s− pa0)(s− pa1) · · · (s− panp−1)
(56)

the bilinear z-transform converts Ha(s) into the discrete transfer function Hd(z) by mapping the
s-plane onto the z-plane with the approximation

s ≈ 2

T

1− z−1

1 + z−1
(57)

This maps Ha(0)→ Hd(0) and Ha(∞)→ Hd(ωs/2), however we are free to choose the pre-warping
factor which maps the cutoff frequency ωc.

s→ ωc cot

(
πωc
ωs

)
1− z−1

1 + z−1
(58)

Substituting this into Ha(s) gives the discrete-time transfer function

H(z) = ka

(
m1−z−1

1+z−1 − za0

)(
m1−z−1

1+z−1 − za1

)
· · ·
(
m1−z−1

1+z−1 − zanz−1

)
(
m1−z−1

1+z−1 − pa0

)(
m1−z−1

1+z−1 − pa1

)
· · ·
(
m1−z−1

1+z−1 − panp−1

) (59)

15.8 iirdes (infinite impulse response filter design) 113

where m = ωc cot (πωc/ωs) is the frequency pre-warping factor, computed in liquid via the method
iirdes freqprewarp(). Multiplying both the numerator an denominator by (1 + z−1)np and
applying some algebraic manipulation results in the digital filter

Hd(s) = kd
(1− zd0z

−1)(1− zd1z
−1) · · · (1− zdn−1z

−1)

(1− pd0z−1)(1− pd1z−1) · · · (1− pdn−1z−1)
(60)

The bilinear zpk() method in liquid transforms the the analog zeros (zak), poles (pak), and gain
(H0) into their digital equivalents (zdk, pdk, G0). For a filter with nz analog zeros zak the digital
zeros zdk are computed as

zdk =

{
1+mzak
1−mzak k < nz

−1 otherwise
(61)

where m is the pre-warping factor. For a filter with np analog poles pak the digital poles pdk are
computed as

pdk =
1 +mpak
1−mpak

(62)

Keeping in mind that an analog filter’s order is defined by its number of poles, the digital gain can
be computed as

G0 = H0

np−1∏
k=0

1− pdk
1− zdk

(63)

15.8.5 Filter transformations

The prototype low-pass digital filter can be converted into a high-pass, band-pass, or band-stop
filter using a combination of the following filter transformations in liquid:

iirdes dzpk lp2hp(* zd,* pd, n,* zdt,* pdt) Converts a low-pass digital prototype Hd(z) to a
high-pass prototype. This is accomplished by transforming the n zeros and poles (represented
by the input arrays zd and pd) into n transformed zeros and poles (represented by the output
arrays zdt and pdt).

iirdes dzpk lp2bp(* zd,* pd, n,* zdt,* pdt) Converts a low-pass digital prototype Hd(z) to a
band-pass prototype. This is accomplished by transforming the n zeros and poles (represented
by the input arrays zd and pd) into 2n transformed zeros and poles (represented by the
output arrays zdt and pdt).

15.8.6 Filter Coefficient Computation

The digital filter defined by (60) can be expanded to fit the familiar IIR transfer function as in
(53). This can be accomplished using the iirdes dzpk2tff() method. Alternatively, the filter can
be written as a set of cascaded second-order IIR filters:

Hd(z) = G0

[
1 + z−1

1− p0z−1

]r L∏
k=1

[
Gi

(1− ziz−1)(1− z∗i z−1)

(1− piz−1)(1− p∗i z−1)

]
(64)

where r = 0 when the filter order is odd, r = 1 when the filter order is even, and L = (n−r)/2. This
can be accomplished using the iirdes dzpk2sosf() method and is preferred over the traditional
transfer function design for stability reasons.

114 15 FILTER

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

(a) spectrum

 0 0.5 1

zeros
poles

(b) zeros, poles

Figure 23: butterf (Butterworth filter design)

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

(a) spectrum

 0 0.5 1

zeros
poles

(b) zeros, poles

Figure 24: cheby1f (Chebyshev type-I filter design)

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

(a) spectrum

 0 0.5 1

zeros
poles

(b) zeros, poles

Figure 25: cheby2f (Chebyshev type-II filter design)

15.8 iirdes (infinite impulse response filter design) 115

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

(a) spectrum

 0 0.5 1

zeros
poles

(b) zeros, poles

Figure 26: ellipf (Elliptic filter design)

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

(a) spectrum

 0 0.5 1

zeros
poles

(b) zeros, poles

Figure 27: besself (Bessel filter design)

116 15 FILTER

15.9 interp (interpolator)

The interp object implements a basic interpolator with an integer output-to-input resampling
ratio. An example of the interp interface is listed below.

1 // file: doc/listings/interp.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 unsigned int M=4; // interpolation factor

6 unsigned int h_len; // interpolation filter length

7

8 // design filter and create interpolator

9 float h[h_len]; // filter coefficients

10 interp_crcf q = interp_crcf_create(M,h,h_len);

11

12 // generate input signal and interpolate

13 float complex x; // input sample

14 float complex y[M]; // output samples

15

16 // run interpolator (repeat as necessary)

17 {

18 interp_crcf_execute(q, x, y);

19 }

20

21 // destroy the interpolator object

22 interp_crcf_destroy(q);

23 }

Listed below is the full interface to the interp family of objects. While each method is listed for
interp crcf, the same functionality applies to interp rrrf and interp cccf.

interp crcf create(M,*h,N) creates an interp object with an interpolation factor M using N
filter coefficients h.

interp crcf create prototype(M,m,As) create an interp object using a filter prototype de-
signed using the firdes kaiser window() method (see §15.5) with a normalized cut-off fre-
quency 1/2M , a filter length of 2Mm coefficients, and a stop-band attenuation of As dB.

interp crcf create rnyquist(type,k,m,beta,dt) creates an interp object from a square-root
Nyquist filter prototype with k samples per symbol (interpolation factor), m symbols of
delay, β excess bandwidth, and a fractional sampling interval ∆t. §15.5.3 provides a detailed
description of the available square-root Nyquist filter prototypes available in liquid.

interp crcf destroy(q) destroys the interpolator, freeing all internally-allocated memory.

interp crcf print(q) prints the internal properties of the interpolator to the standard output.

interp crcf clear(q) clears the internal interpolator buffers.

interp crcf execute(q,x,*y) executes the interpolator for an input x, storing the result in the
output array y (which has a length of M samples).

15.10 msresamp (multi-stage arbitrary resampler) 117

-2

-1

 0

 1

 2

-5 0 5 10 15 20 25 30 35 40

R
e

a
l

Sample Index

interp
symbols

-2

-1

 0

 1

 2

-5 0 5 10 15 20 25 30 35 40

Im
a

g

Sample Index

interp
symbols

Figure 28: interp crcf (interpolator) example with M = 4, compensating for filter delay.

A graphical example of the interpolator can be seen in Figure 28. A detailed example program is
given in examples/interp crcf example.c, located under the main liquid project directory.

15.10 msresamp (multi-stage arbitrary resampler)

The msresamp object implements a multi-stage arbitrary resampler use for efficient interpolation
and decimation. By using a combination of half-band interpolators/decimators (§15.11) and an
arbitrary resampler (§15.12) the msresamp object can efficiently realize any arbitrary resampling
rate desired. Figure 29 depicts how the multi-stage resampler operates for both interpolation and
decimation modes. The half-band resamplers efficiently handle the majority of the work, leaving
the arbitrary resampler to operate at the lowest sample rate possible.

Listed below is the full interface to the msresamp family of objects. While each method is listed
for msresamp crcf, the same functionality applies to msresamp rrrf and msresamp cccf.

msresamp crcf create(r,As) creates a msresamp object with a resampling rate r and a target
stop-band suppression of As dB.

msresamp crcf destroy(q) destroys the resampler, freeing all internally-allocated memory.

msresamp crcf print(q) prints the internal properties of the resampler to the standard output.

msresamp crcf reset(q) clears the internal resampler buffers.

118 15 FILTER

x ↓ 2 ↓ 2 ... ↓ 2 1
2 ≤ r ≤ 1 y

multi-stage halfband decimation arbitrary resampler

(a) decimation

x 1 ≤ r ≤ 2 ↑ 2 ↑ 2 ... ↑ 2 y

multi-stage halfband interpolationarbitrary resampler

(b) interpolation

Figure 29: msresamp (multi-stage resampler) block diagram showing both interpolation and
decimation modes

msresamp crcf filter execute(q,*x,nx,*y,*ny) executes the msresamp object on a sample
buffer x of length nx, storing the output in y and specifying the number of output elements
in ny.

msresamp crcf get delay(q) returns the number of samples of delay in the output (can be a
non-integer value).

Below is a code example demonstrating the msresamp interface.

1 // file: doc/listings/msresamp_crcf.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 float r=0.117f; // resampling rate (output/input)

7 float As=60.0f; // resampling filter stop-band attenuation [dB]

8

9 // create multi-stage arbitrary resampler object

10 msresamp_crcf q = msresamp_crcf_create(r,As);

11 msresamp_crcf_print(q);

12

13 unsigned int nx = 400; // input size

14 unsigned int ny = ceilf(nx*r); // expected output size

15 float complex x[nx]; // input buffer

16 float complex y[ny]; // output buffer

17 unsigned int num_written; // number of values written to buffer

18

19 // ... initialize input ...

20

15.11 resamp2 (half-band filter/resampler) 119

21 // execute resampler, storing result in output buffer

22 msresamp_crcf_execute(q, x, nx, y, &num_written);

23

24 // ... repeat as necessary ...

25

26 // clean up allocated objects

27 msresamp_crcf_destroy(q);

28 }

Figure 30 gives a graphical depiction in both the time and frequency domains of the multi-stage
resampler acting as an interpolator. The time series has been aligned (shifted by the filter delay
and scaled by the resampling rate) to show equivalence. For a more detailed example, refer to
examples/msresamp crcf example.c located in the main liquid project source directory.

15.11 resamp2 (half-band filter/resampler)

resamp2 is a half-band resampler used for efficient interpolation and decimation. The internal filter
of the resamp2 object is a Kaiser-windowed sinc (see firdes kaiser window, §15.5) with fc = 1/2.
This makes the filter half-band, and puts the half-power (6 dB) cutoff point ωc at π/2 (one quarter
of the sampling frequency). In fact, any FIR filter design using a windowed sinc function with
periodicity fc = 1/2 will generate a Nyquist half-band filter (zero inter-symbol interference). This
is because [42, (4.6.3)]

h(Mn) =

{
1 n = 0

0 otherwise
(65)

which holds for h(n) = w(n) sin(πn/M)/(πn) since sin(πn/M) = 0 for n = any non-zero multiple
of M. Additionally, M = 2 is the special case of half-band filters. In particular half-band filtering is
computationally efficient because half the coefficients of the filter are zero, and the remaining half
are symmetric (so long as w(n) is also symmetric). In theory, this means that for a filter length of
4m + 1 taps, only m computations are necessary [12]. The resamp2 object in liquid uses a Kaiser
window for w(n) for several reasons, but in particular because it is nearly optimum, and it is easy
to trade side-lobe attenuation for transition bandwidth. Listed below is the full interface to the
resamp2 family of objects. While each method is listed for resamp2 crcf, the same functionality
applies to resamp2 rrrf and resamp2 cccf.

resamp2 crcf create(m,f0,As) creates a resamp2 object with a resampling rate 2, a filter semi-
length ofm samples (equivalent filter length 4m+1), centered at frequency f0, and a stop-band
suppression of As dB.

resamp2 crcf recreate(q,m,f0,As) recreates a resamp2 object with revised parameters.

resamp2 crcf destroy(q) destroys the resampler, freeing all internally-allocated memory.

resamp2 crcf print(q) prints the internal properties of the resampler to the standard output.

resamp2 crcf clear(q) clears the internal resampler buffers.

resamp2 crcf filter execute(q,x,*y0,*y1) executes the resamp2 object as a half-band filter
on an input sample x, storing the low-pass filter output in y0 and the high-pass filter output
in y1.

120 15 FILTER

-1

 0

 1

-20 -10 0 10 20 30 40 50

R
e

a
l

Input Sample Index

original
resampled

-1

 0

 1

-20 -10 0 10 20 30 40 50

Im
a
g

Input Sample Index

original
resampled

(a) time

-120

-100

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n
s
it
y
 [

d
B

]

Normalized Output Frequency

original
resampled

(b) PSD

Figure 30: msresamp crcf (multi-stage resampler) interpolator demonstration with a stop-band
suppression As = 60 dB at the irrational rate r =

√
19 ≈ 4.359

15.12 resamp (arbitrary resampler) 121

resamp2 crcf decim execute(q,*x,*y) executes the half-band resampler as a decimator for an
input array x with two samples, storing the resulting samples in the array y.

resamp2 crcf interp execute(q,x,*y) executes the half-band resampler as an interpolator for
an input sample x, storing the resulting two output samples in the array y.

Below is a code example demonstrating the resamp2 interface.

1 // file: doc/listings/resamp2_crcf.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int m = 7; // filter semi-length

7 float As=-60.0f; // resampling filter stop-band attenuation

8

9 // create half-band resampler

10 resamp2_crcf q = resamp2_crcf_create(m,0.0f,As);

11

12 float complex x; // complex input

13 float complex y[2]; // output buffer

14

15 // ... initialize input ...

16 {

17 // execute half-band resampler as interpolator

18 resamp2_crcf_interp_execute(q, x, y);

19 }

20

21 // ... repeat as necessary ...

22

23 // clean up allocated objects

24 resamp2_crcf_destroy(q);

25 }

Figure 31 gives a graphical depiction in both the time and frequency domains of the half-band resam-
pler acting as an interpolator. The time series has been aligned (shifted by the filter delay and scaled
by the resampling rate) to show equivalence. For more detailed and extensive examples, refer to
examples/resamp2 crcf decim example.c and examples/resamp2 crcf interp example.c located
in the main liquid project source directory.

15.12 resamp (arbitrary resampler)

For arbitrary (e.g. irrational) resampling ratios, the resamp object is the ideal solution. It makes
no restrictions on the output-to-input resampling ratio (e.g. irrational values are fair game). The
arbitrary resampler uses a polyphase filter bank for interpolation between available input sample
points.

Because the number of outputs for each input is not fixed, the interface needs some explaining.
Over time the true resampling ratio will equal the value specified, however from one input to the
next, the number of outputs will change. For example, if the resampling rate is 2, every input will
produce exactly two output samples. However, if the resampling rate is

√
2 ≈ 1.4142, an input

122 15 FILTER

-1

 0

 1

-10 0 10 20 30 40 50

R
e

a
l

Input Sample Index

original
interpolated

-1

 0

 1

-10 0 10 20 30 40 50

Im
a
g

Input Sample Index

original
interpolated

(a) time

-120

-100

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Output Frequency

original
interpolated

filter

(b) PSD

Figure 31: resamp2 crcf (half-band resampler) interpolator demonstration

15.12 resamp (arbitrary resampler) 123

sample will usually produce one output, but sometimes two. In the limit (on average) however,
the ratio of output samples to input samples will be exactly

√
2. The resamp object handles this

internally by storing the accumulated sampling phase and produces an output for each overflow
(i.e. values where the accumulated phase is equal to or exceeds 1).

Below is a code example demonstrating the resamp interface. Notice that the resamp crcf execute()

method also returns the number of samples written to the buffer. This number will never exceed
dre.

1 // file: doc/listings/resamp_crcf.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int h_len = 13; // filter semi-length (filter delay)

7 float r=0.9f; // resampling rate (output/input)

8 float bw=0.5f; // resampling filter bandwidth

9 float slsl=-60.0f; // resampling filter sidelobe suppression level

10 unsigned int npfb=32; // number of filters in bank (timing resolution)

11

12 // create resampler

13 resamp_crcf q = resamp_crcf_create(r,h_len,bw,slsl,npfb);

14

15 unsigned int n = (unsigned int)ceilf(r);

16 float complex x; // complex input

17 float complex y[n]; // output buffer

18 unsigned int num_written; // number of values written to buffer

19

20 // ... initialize input ...

21

22 // execute resampler, storing result in output buffer

23 resamp_crcf_execute(q, x, y, &num_written);

24

25 // ... repeat as necessary ...

26

27 // clean up allocated objects

28 resamp_crcf_destroy(q);

29 }

Figure 32 gives a graphical depiction of the arbitrary resampler, in both the time and frequency
domains. The time series has been aligned (shifted by the filter delay and scaled by the resampling
rate) to show equivalence. Additionally, the signal’s power spectrum has been scaled by r to reflect
the change in sampling rate. In the example the input array size is 187 samples; the resampler
produced 133 output samples which yields a true resampling rate of ṙ = 133/187 ≈ 0.71123 which
is close to the target rate of r = 1/

√
2 ≈ 0.70711.

It is important to understand how filter design impacts the performance of the resampler. The
resamp object interpolates between available sample points to minimize aliasing effects on the
output signal. This is apparent in the power spectral density plot in figure 32 which shows very
little aliasing on the output signal. Aliasing can be reduced by increasing the filter length at the
cost of additional computational complexity; additionally the number of filters in the bank can be

124 15 FILTER

increased to improve timing resolution between samples. For synchronization of digital receivers, it
is always good practice to precede the resampler with an anti-aliasing filter to remove out-of-band
interference.

Listed below is the full interface to the resamp family of objects. While each method is listed
for resamp crcf, the same functionality applies to resamp rrrf and resamp cccf.

resamp crcf create(r,m,fc,As,N) creates a resamp object with a resampling rate r, a nominal
filter delay of m samples, a cutoff frequency of fc, a stop-band suppression of As dB, using a
polyphase filterbank with N filters.

resamp crcf destroy(q) destroys the resampler, freeing all internally-allocated memory.

resamp crcf print(q) prints the internal properties of the resampler to the standard output.

resamp crcf reset(q) clears the internal resampler buffers.

resamp crcf setrate(q,r) sets the resampling rate to r.

resamp crcf execute(q,x,*y,*nw) executes the resampler for an input sample x, storing the
resulting samples in the output array y specifying the number of samples written as nw. The
output buffer y needs to be at least dre.

See also: resamp2, firpfb, symsync, examples/resamp crcf example.c

15.13 symsync (symbol synchronizer)

The symsync object is a multi-rate symbol timing synchronizer useful for locking a received digital
signal to the receiver’s clock. It is effectively the same as the resamp object, but includes an internal
control mechanism for tracking to timing phase and frequency offsets. The filter structure is a
polyphase representation of a Nyquist matched filter. The instantaneous timing error is computed
from the maximum likelihood timing error detector [29] which relies on the derivative to the matched
filter impulse response. liquid internally computes polyphase filter banks for both the matched and
derivative-matched filters. If the output of the matched filter at sample k is y(k) and the output
of the derivative matched filter is ẏ(k) then the instantaneous timing estimate is

eτ (k) = tanh
(
y(k)ẏ(k)

)
(66)

This timing error estimate has significant improvements over heuristic-based estimates such as the
popular Mueller and Müller timing recovery scheme [30]. Applying a simple first-order recursive
loop filter yields the averaged timing estimate

∆τ(k) = βeτ (k) + α∆τ(k − 1) (67)

where α = 1 − ωτ and β = 0.22ωτ are the loop filter coefficients for a given filter bandwidth ωτ .
While these coefficients are certainly not optimized, it is important to understand the difficulty
in computing loop filter coefficients when a delay is introduced into a control loop. This delay is
the result of the matched filter itself and can cause instability with traditional phase-locked loop
filter designs. Internally the symsync object uses the principles of the resamp object (arbitrary
resampler, see §15.12) for resampling the signal—actually decimating to one sample per symbol.

15.13 symsync (symbol synchronizer) 125

-3

-2

-1

 0

 1

 2

 3

-20 0 20 40 60 80 100 120 140 160 180 200

R
e

a
l

Input Sample Index

original
resampled

-3

-2

-1

 0

 1

 2

 3

-20 0 20 40 60 80 100 120 140 160 180 200

Im
a
g

Input Sample Index

original
resampled

(a) time

-120

-100

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o

w
e
r

S
p

e
c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Input Frequency

original
resampled

(b) PSD

Figure 32: resamp crcf (arbitrary resampler) demonstration, r = 1/
√

2 ≈ 0.7071

126 15 FILTER

Its internal control loop dynamically adjusts the rate r such that the timing phase of the receiver
is aligned with the incoming signal’s symbol timing.

Below is a code example demonstrating the symsync interface. Notice that the symsync crcf execute()

method also returns the number of symbols written to the output buffer.

1 // file: doc/listings/symsync_crcf.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int k=2; // samples/symbol

7 unsigned int m=3; // filter delay (symbols)

8 float beta=0.3f; // filter excess bandwidth factor

9 unsigned int Npfb=32; // number of polyphase filters in bank

10 liquid_rnyquist_type ftype = LIQUID_RNYQUIST_RRC;

11

12 // create symbol synchronizer

13 symsync_crcf q = symsync_crcf_create_rnyquist(ftype,k,m,beta,Npfb);

14

15 float complex * x; // complex input

16 float complex * y; // output buffer

17 unsigned int nx; // number of input samples

18 unsigned int num_written; // number of values written to buffer

19

20 // ... initialize input, output ...

21

22 // execute symbol synchronizer, storing result in output buffer

23 symsync_crcf_execute(q, x, nx, y, &num_written);

24

25 // ... repeat as necessary ...

26

27 // clean up allocated objects

28 symsync_crcf_destroy(q);

29 }

Listed below is the full interface to the symsync family of objects. While each method is listed for
symsync crcf, the same functionality applies to symsync rrrf and symsync cccf.

symsync crcf create(k,N,*h,h len) creates a symsync object from a prototype filter h of length
hlen and having k samples per symbol. The internal object restructures the input filter into
a polyphase prototype having N filters.

symsync crcf create rnyquist(ftype,k,m,beta,N) creates a symsync object from a square-
root Nyquist prototype of type ftype (see §15.5.3 for a description of available square-root
Nyquist filters in liquid). The generated filter has k samples per symbol, a nominal delay of
m symbols, and an excess bandwidth factor of β. The internal polyphase filter bank has N
filters.

symsync crcf destroy(q) destroys the symbol synchronizer, freeing all internally-allocated mem-
ory.

15.13 symsync (symbol synchronizer) 127

symsync crcf print(q) prints the internal properties of the symbol synchronizer object to the
standard output.

symsync crcf clear(q) resets the symbol synchronizer, clearing the internal buffers and filter
state.

symsync crcf set lf bw(q,w) sets the internal bandwidth of the loop filter to ω.

symsync crcf lock(q) locks the symbol synchronizer such that it will still decimate the incoming
signal but will not update its internal state.

symsync crcf unlock(q) unlocks the symbol synchronizer, resuming its ability to track to the
input signal.

symsync crcf execute(q,*x,nx,*y,*ny) executes the resampler for an input array x with nx
samples, storing the resulting samples in the output array y specifying the number of samples
written as ny.

symsync crcf get tau(q) returns the current timing estimate (fractional sampling interval) of the
object.

Figure 33 demonstrates the symsync crcf object recovering the sample timing phase for a QPSK
signal. For a more detailed example, refer to examples/symsync crcf example.c located under
the main liquid project source directory.

128 15 FILTER

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 100 200 300 400 500

R
e

a
l

Symbol Index

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 100 200 300 400 500

Im
a

g

Symbol Index

(a) symsync output (time series)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q
u

a
d

ra
tu

re
 p

h
a

s
e

In-phase

first 250 symbols
last 250 symbols

(b) Constellation

Figure 33: symsync (symbol synchronizer) demonstration for a QPSK signal with a square-root
raised-cosine pulse with k = 2 samples/symbol, a delay of m = 4 symbols, and an excess bandwidth
factor β = 0.3

129

16 framing

The framing module contains objects and methods for packaging data into manageable frames
and packets. For convention, liquid refers to a “packet” as a group of binary data bytes (often
with forward error-correction applied) that need to be communicated over a wireless link. Objects
that operate on packets in liquid are the bpacketgen, bpacketsync and packetizer structures.
By contrast, a “frame” is a representation of the data once it has been properly partitioned,
encapsulated, and modulated before transmitting over the air. Framing objects included in liquid
are the frame64, flexframe, gmskframe, and ofdmflexframe structures which greatly simplify
over-the-air digital communication of raw data.

16.1 interleaver

This section describes the functionality of the liquid interleaver object. In wireless communica-
tions systems, bit errors are often grouped together as a result of multi-path fading, demodulator
symbol errors, and synchronizer instability. Interleavers serve to distribute grouped bit errors
evenly throughout a block of data which aids certain forward error-correction (FEC) codes in their
decoding process (see §13 on error-correcting codes). On the transmit side of the wireless link, the
interleaver re-orders the bits after FEC encoding and before modulation. On the receiving side,
the de-interleaver re-shuffles the bits to their original position before attempting to run the FEC
decoder. The bit-shuffling order must be known at both the transmitter and receiver.

The interleaver object operates by permuting indices on the input data sequence. The indices
are computed during the interleaver create() method and stored internally. At each iteration
data bytes are re-shuffled using the permutation array. Depending upon the properties of the
array, multiple iterations should not result in observing the original data sequence. Shown below
is a simple example where 8 symbols (0, . . . , 7) are re-ordered using a random permutation. The
data at iteration 0 are the original data which are permuted twice.

forward

permutation iter[0] iter[1] iter[2]

0 -> 6 0 6 1

1 -> 4 1 4 3

2 -> 7 2 7 5

3 -> 0 3 0 6

4 -> 3 4 3 0

5 -> 2 5 2 7

6 -> 1 6 1 4

7 -> 5 7 5 2

Reversing the process is as simple as computing the reverse permutation from the input; this is
equivalent to reversing the arrows in the forward permutation (e.g. the 2→ 7 forward permutation
becomes the 7→ 2 reverse permutation).

reverse

permutation iter[2] iter[1] iter[0]

0 -> 3 1 6 0

1 -> 6 3 4 1

130 16 FRAMING

2 -> 5 5 7 2

3 -> 4 6 0 3

4 -> 1 0 3 4

5 -> 7 7 2 5

6 -> 0 4 1 6

7 -> 2 2 5 7

Notice that permuting indices only re-orders the bytes of data and does nothing to shuffle the bits
within the byte. It is beneficial to FEC decoders to separate the bit errors as much as possible.
Therefore, in addition to index permutation, liquid also applies masks to the data while permuting.

16.1.1 Interface

The interleaver object operates like most objects in liquid with typical create(), destroy(),
and execute() methods.

interleaver create(n) creates an interleaver object accepting n bytes, and defaulting to 2 iter-
ations.

interleaver destroy(q) destroys the interleaver object, freeing all internally-allocated memory
arrays.

interleaver set num iterations(q,k) sets the number of iterations of the interleaver. Increas-
ing the number of iterations helps improve bit dispersion, but can also increase execution
time. The default number of iterations at the time of creation is 2 (see Figure 34).

interleaver encode(q,*msg dec,*msg enc) runs the forward interleaver, reading data from the
first array argument and writing the result to the second array argument. The array pointers
can reference the same block of memory, if necessary.

interleaver decode(q,*msg enc,*msg dec) runs the reverse interleaver, reading data from the
first array argument and writing the result to the second array argument. Like the encode()

method, the array pointers can reference the same block of memory.

This listing gives a basic demonstration to the interface to the interleaver object:

1 // file: doc/listings/interleaver.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int n=9; // message length (bytes)

7

8 // create the interleaver

9 interleaver q = interleaver_create(n);

10 interleaver_set_depth(q,3);

11

12 // create arrays

13 unsigned char msg_org[n]; // original message data

14 unsigned char msg_int[n]; // interleaved data

16.2 packetizer (multi-level error-correction) 131

15 unsigned char msg_rec[n]; // de-interleaved, recovered data

16

17 // ...initialize msg_org...

18

19 // interleave/de-interleave the data

20 interleaver_encode(q, msg_org, msg_int);

21 interleaver_decode(q, msg_int, msg_rec);

22

23 // destroy the interleaver object

24 interleaver_destroy(q);

25 }

A visualization of the interleaver can be seen in Figure 34 where the input index is plotted
against the output index for varying number of iterations. Notice that with zero iterations, the
output and input are identical (no interleaving). With one iteration only the bytes are interleaved,
and so the output is grouped into 8-bit blocks. Further iterations, however, result in sufficiently
dispersed bits, and patterns between input and output indices become less evident. The packetizer
object (§16.2) uses the interleaver object in conjunction to forward error-correction coding (§13)
to provide a simple interface for generating protected data packets. A full example can be found
in examples/interleaver example.c.

16.2 packetizer (multi-level error-correction)

The liquid packetizer is a structure for abstracting multi-level forward error-correction from the
user. The packetizer accepts a buffer of uncoded data bytes and adds a cyclic redundancy check
(CRC) before applying two levels of forward error-correction and bit-level interleaving. The user
may choose any two supported FEC schemes (including none) and the packetizer object will handle
buffering and data management internally, providing a truly abstract interface. The same is true
for the packet decoder which accepts an array of possibly corrupt data and attempts to recover the
original message using the FEC schemes provided. The packet decoder returns the validity of the
resulting CRC as well as its best effort of decoding the message.

The packetizer also allows for re-structuring if the user wishes to change error-correction schemes
or data lengths. This is accomplished with the packetizer recreate() method. Listed below is
the full interface to the packetizer object.

packetizer create(n,crc,fec0,fec1) creates and returns a packetizer object which accepts
n uncoded input bytes and uses the specified CRC and bi-level FEC schemes.

packetizer recreate(q,n,crc,fec0,fec1) re-creates an existing packetizer object with new
parameters.

packetizer destroy(q) destroys an packetizer object, freeing all internally-allocated memory.

packetizer print(q) prints the internal state of the packetizer object to the standard output.

packetizer get dec msg len(q) returns the specified decoded message length n in bytes.

packetizer get enc msg len(q) returns the fully-encoded message length k in bytes.

132 16 FRAMING

 0

 128

 256

 384

 512

 0 128 256 384 512

O
u
tp

u
t
b
it
 i
n
d
e
x

Input bit index

(a) i = 0

 0

 128

 256

 384

 512

 0 128 256 384 512

O
u
tp

u
t
b
it
 i
n
d
e
x

Input bit index

(b) i = 1

 0

 128

 256

 384

 512

 0 128 256 384 512

O
u
tp

u
t
b
it
 i
n
d
e
x

Input bit index

(c) i = 2

 0

 128

 256

 384

 512

 0 128 256 384 512

O
u
tp

u
t
b
it
 i
n
d
e
x

Input bit index

(d) i = 3

 0

 128

 256

 384

 512

 0 128 256 384 512

O
u
tp

u
t
b
it
 i
n
d
e
x

Input bit index

(e) i = 4

Figure 34: interleaver (block) demonstration of a 64-byte (512-bit) array with increasing
number of iterations (interleaving depth)

16.2 packetizer (multi-level error-correction) 133

packetizer encode(q,*msg,*pkt) encodes the n-byte input message storing the result in the
k-byte encoded output message.

packetizer decode(q,*pkt,*msg) decodes the k-byte encoded input message storing the result
in the n-byte output. The function returns a 1 if the internal CRC passed and a 0 if it failed.
If no CRC was specified (e.g. LIQUID CRC NONE) then a 1 is always returned.

packetizer decode soft(q,*pkt,*msg) decodes the encoded input message just like packetizer decode()

but with soft bits instead of hard bytes. The input is an array of type unsigned char with
8× k elements representing soft bits. As before, the function returns a 1 if the internal CRC
passed and a 0 if it failed. See §13.7.1 for more information on soft-decision decoding.

Here is a minimal example demonstrating the packetizer’s most basic functionality:

1 // file: doc/listings/packetizer.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // set up the options

6 unsigned int n=16; // uncoded data length

7 crc_scheme crc = LIQUID_CRC_32; // validity check

8 fec_scheme fec0 = LIQUID_FEC_HAMMING74; // inner code

9 fec_scheme fec1 = LIQUID_FEC_REP3; // outer code

10

11 // compute resulting packet length

12 unsigned int k = packetizer_compute_enc_msg_len(n,crc,fec0,fec1);

13

14 // set up the arrays

15 unsigned char msg[n]; // original message

16 unsigned char packet[k]; // encoded message

17 unsigned char msg_dec[n]; // decoded message

18 int crc_pass; // decoder validity check

19

20 // create the packetizer object

21 packetizer p = packetizer_create(n,crc,fec0,fec1);

22

23 // initialize msg here

24 unsigned int i;

25 for (i=0; i<n; i++) msg[i] = i & 0xff;

26

27 // encode the packet

28 packetizer_encode(p,msg,packet);

29

30 // decode the packet, returning validity

31 crc_pass = packetizer_decode(p,packet,msg_dec);

32

33 // destroy the packetizer object

34 packetizer_destroy(p);

35 }

See also: fec module, examples/packetizer example.c

134 16 FRAMING

p/n sequence header payload (packetizer)

1010110110101100101...0110001111010011001...0110010110001100011100011001000110...

Figure 35: Structure used for the bpacketgen and bpacketsync objects.

16.3 bpacket (binary packet generator/synchronizer)

The bpacketgen and bpacketsync objects realize a pair of binary packet generator and synchro-
nizer objects useful for streaming data applications. The bpacketgen object generates packets by
encapsulating data using a packetizer object but adds a special bit sequence and header to the
beginning of the packet. The bit sequence at the beginning of the packet allows the synchronizer
to find it using a binary cross-correlator; the header includes information about how the packet is
encoded, including the two levels of forward error-correction coding used, the validity check (e.g.
cyclic redundancy check), and the length of the payload. The full packet is assembled according to
Figure 35.

At the receiver the bpacketsync object correlates against the bit sequence looking for the
beginning of the packet. It is important to realize that the receiver does not need to be byte-
aligned as the packet synchronizer takes care of this internally. Once a packet has been found
the packet synchronizer decodes the header to determine how the payload is to be decoded. The
payload is decoded and the resulting data is passed to a callback function. The synchronizer
compensates for the situation where all the bits are flipped (e.g. coherent BPSK with a phase
offset of π radians). Because the packet’s header includes information about how to decode the
payload the synchronizer automatically reconfigures itself to the packet parameters without any
additional specification by the user. This allows great flexibility adapting encoding parameters to
dynamic channel environments.

16.3.1 bpacketgen interface

The functionality of the bpacket structure is split into two objects: the bpacketgen object gener-
ates the packets and runs on the transmit side of the link while the bpacketsync object synchronizes
and decodes the packets and runs on the receive side of the link. Listed below is the full interface
to the bpacketgen object.

bpacketgen create(m,n,crc,fec0,fec1) creates and returns a bpacketgen object which accepts
n uncoded input bytes and uses the specified CRC and bi-level FEC schemes. The first
parameter (m) is reserved for future development and is currently ignored.

bpacketgen recreate(q,m,n,crc,fec0,fec1) re-creates an existing bpacketgen object with new
parameters.

bpacketgen destroy(q) destroys an bpacketgen object, freeing all internally-allocated memory.

bpacketgen print(q) prints the internal state of the bpacketgen object to the standard output.

16.3 bpacket (binary packet generator/synchronizer) 135

bpacketgen get packet len(q) returns the length in bytes of the fully-encoded packet.

bpacketgen encode(q,*msg,*pkt) encodes the n-byte input message msg, storing the result in
the encoded output packet pkt.

16.3.2 bpacketsync interface

As stated before, the bpacketsync runs on the receiver to synchronize to and decode the incoming
packets. Listed below is the full interface to the bpacketsync object.

bpacketsync create(m,callback,*userdata) creates and returns a bpacketsync object which
invokes a user-defined callback function, passing to it a user-defined object pointer. The first
parameter (m) is reserved for future development and is currently ignored.

bpacketsync destroy(q) destroys an bpacketsync object, freeing all internally-allocated mem-
ory.

bpacketsync print(q) prints the internal state of the bpacketsync object to the standard output.

bpacketsync reset(q) resets the internal state of the object.

bpacketsync execute(q,*bytes,n) runs the synchronizer on n bytes of received data.

bpacketsync execute byte(q,byte) runs the synchronizer on a single byte of received data.

bpacketsync execute sym(q,sym,bps) runs the synchronizer on a symbol with bps bits of infor-
mation.

bpacketsync execute bit(q,bit) runs the synchronizer on a single bit.

The bpacketsync object has a callback function which has four arguments and looks like this:

int bpacketsync_callback(unsigned char * _payload,

int _payload_valid,

unsigned int _payload_len,

void * _userdata);

The callback is typically defined to be static and is passed to the instance of bpacketsync object
when it is created.

payload is a pointer to the decoded bytes of payload data. This pointer is not static and cannot
be used after returning from the callback function. This means that it needs to be copied
locally for you to retain the data.

payload valid is simply a flag to indicate if the payload passed its cyclic redundancy check (“0”
means invalid, “1” means valid). If this flag is zero then the payload most likely has errors
in it. Some applications are error tolerant and so it is possible that the payload data are
still useful. Typically, though, the payload should be discarded and a re-transmission request
should be issued.

payload len indicates the number of bytes in the payload argument.

136 16 FRAMING

userdata is a pointer that given to the bpacketsync object when it was created. This pointer is
passed to the callback and can represent just about anything. Typically it points to another
structure and is the method by which the decoded header and payload data are returned to
the program outside of the callback.

16.3.3 Code example

Listed below is a basic example of of the interface to the bpacketgen and bpacketsync objects. For
a detailed example program, see examples/bpacketsync example.c under the main liquid project
directory.

1 // file: doc/listings/bpacket.example.c

2 # include <liquid / liquid.h>

3

4 int callback(unsigned char * _payload,

5 int _payload_valid,

6 unsigned int _payload_len,

7 framesyncstats_s _stats,

8 void * _userdata)

9 {

10 printf("callback invoked\n");

11 return 0;

12 }

13

14 int main() {

15 // options

16 unsigned int n=64; // original data message length

17 crc_scheme check = LIQUID_CRC_32; // data integrity check

18 fec_scheme fec0 = LIQUID_FEC_HAMMING128; // inner code

19 fec_scheme fec1 = LIQUID_FEC_NONE; // outer code

20

21 // create packet generator and compute packet length

22 bpacketgen pg = bpacketgen_create(0, n, check, fec0, fec1);

23 unsigned int k = bpacketgen_get_packet_len(pg);

24

25 // initialize arrays

26 unsigned char msg_org[n]; // original message

27 unsigned char msg_enc[k]; // encoded message

28 unsigned char msg_dec[n]; // decoded message

29

30 // create packet synchronizer

31 bpacketsync ps = bpacketsync_create(0, callback, NULL);

32

33 // initialize original data message

34 unsigned int i;

35 for (i=0; i<n; i++) msg_org[i] = rand() % 256;

36

37 // encode packet

38 bpacketgen_encode(pg, msg_org, msg_enc);

39

40 // ... channel ...

16.4 frame64, flexframe (basic framing structures) 137

41

42 // push packet through synchronizer

43 bpacketsync_execute(ps, msg_enc, k);

44

45 // clean up allocated objects

46 bpacketgen_destroy(pg);

47 bpacketsync_destroy(ps);

48 }

16.4 frame64, flexframe (basic framing structures)

liquid comes packaged with two basic framing structures: frame64 and flexframe which can be
used with little modification to transmit data over a wireless link. The interface for both of these
objects is intended to be as simple as possible while allowing control over some of the parameters of
the system. On the transmitter side, the appropriate frame generator object is created, configured,
and executed. The receiver side uses an appropriate frame synchronizer object which simply picks
packets of a stream of samples, invoking a callback function for each packet it finds. The simplicity
of the receiver is that the frame synchronizer object automatically reconfigures itself for packets of
different size, modulation scheme, and other parameters.

16.4.1 frame64 description

The framegen64 and framesync64 objects implement a basic framing structure for communicating
packetized data over the air. The framegen64 object accepts a 12-byte header and 64-byte payload
and assemble a 1280sample frame. Internally, the frame generator encodes the header and payload
each with a Hamming(12,8) block code, 16-bit cyclic redundancy check, and modulates the result
with a QPSK modem. The header and payload are encapsulated with special phasing sequences,
and finally the resulting symbols are interpolated using a half-rate root-raised cosine filter (see
§15.5.3).

The true spectral efficiency of the frame is exactly 4/5; 64 bytes of data (512 bits) encoded into
640 symbols. The frame64 structure has the advantage of simplicity but lacks the ability for true
flexibility.

16.4.2 flexframe description

The flexframegen and flexframesync objects are similar to their frame[gen|sync]64 counter-
parts, however extend functionality to include a number of options in structuring the frame.

16.4.3 Framing Structures

While the specifics of the frame64 and flexframe structures are different, both frames consist of
six basic parts:

ramp/up gracefully increases the output signal level to avoid “key clicking” and reduce spectral
side-lobes in the transmitted signal. Furthermore, it allows the receiver’s automatic gain
control unit to lock on to the incoming signal, preventing sharp transitions in its output.

138 16 FRAMING

time

si
gn

a
l
le
ve
l

ra
m
p
up

pr
ea
m
bl
e
ph
as
in
g

p/
n
se
qu
en
ce

he
ad
er

pa
yl
oa
d

ra
m
p
do
wn

Figure 36: Framing structure used for the frame64 and flexframe objects.

preamble phasing is a BPSK pattern which flips phase for each transmitted symbol (+1,-1,+1,-1,. . .).
This sequence serves several purposes but primarily to help the receiver’s symbol synchro-
nization circuit lock onto the proper timing phase. [This works] because the phasing pattern
maximizes the number of symbol transitions [reword].

p/n sequence is an m-sequence (see §23) exhibiting good auto- and cross-correlation properties.
This sequence aligns the frame synchronizers to the remainder of the frame, telling them
when to start receiving and decoding the frame header, as well as if the phase of the received
signal needs to be reversed. At this point, the receiver’s AGC, carrier PLL, and timing PLL
should all have locked. The p/n sequence is of length 64 for both the frame64 and flexframe

structures (63-bit m-sequence with additional padded bit).

header is a fixed-length data sequence which contains a small amount of information about the rest
of the frame. The headers for the frame64 and flexframe structures are vastly different and
are described independently.

payload is the meat of the frame, containing the raw data to be transferred across the link. For
the frame64 structure, the payload is fixed at 64 bytes (hence its moniker), encoded using
the Hamming(12,8) code (§13), and modulated using QPSK. The flexframe structure has
a variable length payload and can be modulated using whatever schemes the user desires,
however forward error-correction is executed externally. In both cases the synchronizer object
invokes the callback upon receiving the payload.

ramp/down gracefully decreases the output signal level as per ramp/up.

A graphical depiction of the framing signal level can be seen in figure 36. The relative lengths
of each section are not necessarily to scale, particularly as the flexframe structure allows many
of these sections to be variable in length. NOTE: while the flexframegen and flexframesync

objects are intended to be used in conjunction with one another, the output of flexframegen

requires matched-filtering interpolation before the flexframesync object can recover the data.

16.4.4 The Decoding Process

Both the frame64 and flexframe objects operate very similarly in their decoding processes. On the
receiver, frames are pulled from a stream of input samples which can exhibit channel impairments

16.5 framesyncprops s (frame synchronizer properties) 139

such as noise, sample timing offset, and carrier frequency and phase offsets. The receiver corrects
for these impairments as best it can using various other signal processing elements in liquid and
attempts to decode the frame. If at any time a frame is decoded (even if improperly), its appropriate
user-defined callback function is invoked. When seeking a frame the synchronizer initially sets its
internal loop bandwidths high for acquisition, including those for the automatic gain control, symbol
timing recovery, and carrier frequency/phase recovery. This is known as acquisition mode, and is
typical for packet-based communications systems. Once the p/n sequence has been found, the
receiver assumes it has a sufficient lock on the channel impairments and reduces its control loop
bandwidths significantly, moving to tracking mode.

16.5 framesyncprops s (frame synchronizer properties)

Governing the behavior any frame synchronizer in liquid is the framesyncprops s object. In general
the frame synchronizer open the bandwidths of their control loops until a certain sequence has been
detected; this helps reduce acquisition time of the received signal. After the frame has been detected
the control loop bandwidths are reduced to improve stability and reduce the possibility of losing a
lock on the signal. Listed below is a description of the framesyncprops object members.

agc bw0/agc bw1 are the respective open/closed automatic gain control bandwidths. The default
values are 10−3 and 10−5, respectively.

agc gmin/agc gmax are the respective maximum/minimum automatic gain control gain values.
The default values are 10−3 and 104, respectively.

sym bw0/sym bw1 are the respective open/closed symbol synchronizer bandwidths. The default
values are 0.08 and 0.05, respectively.

pll bw0/pll bw1 are the respective open/closed carrier phase-locked loop bandwidths. The default
values are 0.02 and 0.005, respectively.

k represents the matched filter’s samples per symbol; however this parameter is reserved for future
development. At present this number should be equal to 2 and should not be changed.

npfb represents the number of filters in the internal symbol timing recovery object’s polyphase filter
bank (see §15.13); however this parameter is reserved for future development and should not
be changed. The default value is 32.

m represents the matched filter’s symbol delay; however this parameter is reserved for future de-
velopment and should not be changed. the default value is 3.

beta represents the matched filter’s excess bandwidth factor; however this parameter is reserved
for future development and should not be changed. the default value is 0.7.

squelch enabled is a flag that specifies if the automatic gain control’s squelch is enabled (see §8.3).
Enabling the squelch (setting squelch enabled equal to 1) will ignore received signals below
the squelch threshold value (see below) to help prevent the receiver’s control loops from
drifting. Enabling the squelch is usually desirable; however care must be taken to properly
set the threshold—ideally about 4 dB above the noise floor—so as not to miss frames with a
weak signal. By default the squelch is disabled.

140 16 FRAMING

autosquelch enabled is a flag that specifies if the automatic gain control’s auto-squelch is enabled
(see §8.3.2). In brief, the auto-squelch attempts to track the signal’s power to automatically
squelch signals 4 dB above the noise floor. By default the auto-squelch is disabled.

squelch threshold is the squelch threshold value in dB (see §8.3). The default value is -35.0, but
the ideal value is about 4 dB above the noise floor.

eq len specifies the length of the internal equalizer (see §12). By default the length is set to zero
which disables equalization of the receiver.

eqrls lambda is the recursive least-squares equalizer forgetting factor λ (see §12.3). The default
value is λ = 0.999.

16.6 framesyncstats s (frame synchronizer statistics)

When the synchronizer finds a frame and invokes the user-defined callback function, a special
structure is passed to the callback that includes some useful information about the frame. This
information is contained within the framesyncstats s structure. While useful, the information
contained within the structure is not necessary for decoding and can be ignored by the user. Listed
below is a description of the framesyncstats object members.

evm is an estimate of the received error vector magnitude in decibels of the demodulated header
(see §19.2).

rssi is an estimate of the received signal strength in dB. This is derived from the synchronizer’s
internal automatic gain control object (see §8).

framesyms a pointer to an array of the frame symbols (e.g. QPSK) at complex baseband before
demodulation. This is useful for plotting purposes. This pointer is not static and cannot be
used after returning from the callback function. This means that it needs to be copied locally
for you to retain the data.

num framesyms the length of the framesyms pointer array.

mod scheme the modulation scheme of the frame (see §19).

mod bps the modulation depth (bits per symbol) of the modulation scheme used in the frame.

check the error-detection scheme (e.g. cyclic redundancy check) used in the payload of the frame
(see §13).

fec0 the inner forward error-correction code used in the payload (see §13).

fec1 the outer forward error-correction code used in the payload (see §13).

A simple way to display the information in an instance of framesyncstats s is to use the framesyncstats print()

method.

16.7 ofdmflexframe (OFDM framing structures) 141

16.7 ofdmflexframe (OFDM framing structures)

The ofdmflexframe family of objects (generator and synchronizer) realize a simple way to load data
onto an OFDM physical layer system. OFDM has several benefits over traditional “narrowband”
communications systems such as the flexframe objects (§16.4). These objects allow the user to
abstractly specify the number of subcarriers, their assignment (null/pilot/data), forward error-
correction and modulation scheme. Furthermore, the framing structure includes a provision for a
brief user-defined header which can be used for source/destination address, packet identifier, etc.

Sending data in parallel channels has some distinct advantages over serial transmission: equal-
ization in the presence of multi-path channel environments is much simpler, inter-symbol interfer-
ence can be eliminated with a properly-chosen cyclic prefix length, and capacity can be increased by
modulating data appropriately on subcarriers relative to their signal-to-noise ratio. Multi-carrier
systems, however, are significantly more sensitive to carrier frequency offsets and Doppler shifts,
leading to inter-carrier interference. OFDM can therefore be more difficult to synchronize and
maintain data fidelity in mobile environments. To assist in synchronization, the transmitter inserts
special preamble symbols at the beginning of each frame which assist the synchronizer in estimat-
ing the carrier frequency offset, recovering the symbol timing, and compensating for effects of the
channel.

This section gives specifics for the OFDM flexible framing structure and is really intended only
as a reference; for a tutorial on how to use the generator/synchronizer objects without getting into
detail, please refer to the OFDM Framing tutorial (§7).

16.7.1 Operational description

Like the frame64 and flexframe structures, the ofdmflexframe structure consists of three main
components: the preamble, the header, and the payload.

Preamble The preamble consists of two types of phasing symbols: the S0 and S1 sequences. The
S0 symbols are necessary for coarse carrier frequency and timing offsets while the S1 sequence
is used for fine timing acquisition and equalizer gain estimation. The transmitter generates
multiple S0 symbols (minimally 2, but usually 3 or more) and just a single S1 symbol. This
aligns the receiver’s timing to that of the transmitter, signaling the start of the header.

Header The header consists of one or more OFDM symbols; the exact number of OFDM sym-
bols depends on the number of subcarriers allocated and the assignment of these subcarriers
(null/pilot/data). The header carries exactly 14 bytes of information, 6 of which are used
internally and the remaining 8 are user-defined. The internal header data provide framing
information to the receiver including the modulation, forward error-correction, and data val-
idation schemes of the payload as well as its length in bytes. These data are encoded with a
forward error-correction scheme and modulated onto the first several OFDM symbols.

Payload The payload consists of zero or more OFDM symbols. Like the header, the exact number
of OFDM symbols depends on the number of subcarriers allocated and the assignment of these
subcarriers.

The full frame is assembled according to Figure 37. Notice that the S0 symbols do not contain
a cyclic prefix; this is to ensure continuity between contiguous S0 symbols and is necessary to

142 16 FRAMING

time

S0 S0

...

S1 H0 H1

...

P0 P1

...

P(n-1)

header payload

Figure 37: Timing structure used for the ofdmflexframegen and ofdmflexframesync objects.
The cyclic prefix is highlighted.

eliminate inter-symbol interference. The single S1 symbol at the end of the preamble is necessary
for timing alignment and an initial equalizer estimate. Once the frame has been detected, the
header is received and decoded. The number of symbols in the header depends on the number of
data subcarriers allocated to each OFDM symbol. The header includes the modulation, coding
schemes, and length of the remainder of the frame. If the synchronizer successfully decodes the
header, it will automatically reconfigure itself to decode the payload.

16.7.2 Subcarrier Allocation

Subcarriers may be arbitrarily allocated into three types:

• OFDMFRAME SCTYPE NULL: The null option disables this subcarrier from transmission. This is
useful for spectral notching and guard bands (see Figure 38). Guard bands are necessary for
interpolation of the signal before transmission;

• OFDMFRAME SCTYPE PILOT: Pilot subcarriers are used to estimate channel impairments includ-
ing carrier phase/frequency offsets as well as timing offsets. Pilot subcarriers are necessary
for coherent demodulation in OFDM systems. The ofdmflexframe structure requires that at
least two subcarriers be designated as pilots. Performance improves if the pilots are evenly
spaced and separated as much as possible (see Figure 38), but the exact location of pilots is
not restricted;

• OFDMFRAME SCTYPE DATA: Data subcarriers are reserved for carrying the payload of the frame,
modulated with the desired scheme. The spectral efficiency of the transmission improves with
more data subcarriers. The ofdmflexframe structure requires that at least one subcarrier be
designated for data.

Typically the subcarriers at the band edges are disabled to avoid aliasing during up-conversion/interpolation.
The elements of p are given in the same order as the FFT input (that is, p0 holds the DC subcarrier
and pM/2 holds the subcarrier at half the sampling frequency). The ofdmframe init default sctype(M,*p)

interface initializes the subcarrier allocation array p for a system with M channels that is expected
to perform relatively well under a variety of channel conditions. Figure 38 depicts an example spec-
tral response of the ofdmflexframe structure with evenly-spaced pilot subcarriers, guard bands,
and a spectral notch in the lower band.

16.7 ofdmflexframe (OFDM framing structures) 143

frequency

−Fs 0 Fs

pilot subcarrierspectral nullguard band

Figure 38: Example spectral response for the ofdmflexframegen and ofdmflexframesync ob-
jects.

16.7.3 Pilot Subcarriers

Pilot subcarriers are used to assist the synchronizer in tracking to slowly-varying channel impair-
ments such as moderate to low carrier frequency/phase offsets and slowly-varying timing frequency
offsets (residual error from initial estimation). The pilots themselves are BPSK symbols with a
pseudo-random phase generated by a linear feedback shift register. To improve the peak-to-average
power ratio, the pilots are different not only from one symbol to another, but within each OFDM
symbol.

16.7.4 ofdmflexframegen

The ofdmflexframegen object is responsible for assembling raw data bytes into contiguous OFDM
time-domain symbols which the ofdmflexframesync object can receive. The life cycle of the
generator is as follows:

1. create the frame generator, passing the number of subcarriers, cyclic prefix length, subcar-
rier allocation, and framing properties (modulation scheme, forward error-correction coding,
payload length, etc);

2. assemble a frame consisting of raw header and payload bytes;

3. write the OFDM symbols (time series) to a buffer until the entire frame has been generated;

4. repeat the “assemble” and “write symbol” steps for as many frames as is desired;

5. destroy the frame generator object.

This listing gives a basic demonstration to the interface to the ofdmflexframegen object:

1 // file: doc/listings/ofdmflexframegen.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int M = 64; // number of subcarriers

7 unsigned int cp_len = 16; // cyclic prefix length

144 16 FRAMING

8 unsigned int payload_len = 120; // length of payload (bytes)

9

10 // buffers

11 float complex buffer[M + cp_len]; // time-domain buffer

12 unsigned char header[8]; // header data

13 unsigned char payload[payload_len]; // payload data

14 unsigned char p[M]; // subcarrier allocation (null/pilot/data)

15

16 // initialize frame generator properties

17 ofdmflexframegenprops_s fgprops;

18 ofdmflexframegenprops_init_default(&fgprops);

19 fgprops.num_symbols_S0 = 3;

20 fgprops.check = LIQUID_CRC_32;

21 fgprops.fec0 = LIQUID_FEC_NONE;

22 fgprops.fec1 = LIQUID_FEC_HAMMING128;

23 fgprops.mod_scheme = LIQUID_MODEM_QAM16;

24

25 // initialize subcarrier allocation to default

26 ofdmframe_init_default_sctype(M, p);

27

28 // create frame generator

29 ofdmflexframegen fg = ofdmflexframegen_create(M, cp_len, p, &fgprops);

30

31 // ... initialize header/payload ...

32

33 // assemble frame

34 ofdmflexframegen_assemble(fg, header, payload, payload_len);

35

36 // generate frame

37 int last_symbol=0;

38 unsigned int num_written;

39 while (!last_symbol) {

40 // generate each OFDM symbol

41 last_symbol = ofdmflexframegen_writesymbol(fg, buffer, &num_written);

42 }

43

44 // destroy the frame generator object

45 ofdmflexframegen_destroy(fg);

46 }

Listed below is the full interface to the ofdmflexframegen object.

ofdmflexframegen create(M,c,*p,*fgprops) creates and returns an ofdmflexframegen object
with M subcarriers (M must be an even integer), a cyclic prefix length of c samples, a
subcarrier allocation determined by p, and a set of properties determined by fgprops.

ofdmflexframegen destroy(q) destroys an ofdmflexframegen object, freeing all internally-allocated
memory.

ofdmflexframegen reset(q) resets the ofdmflexframegen object, including all internal buffers.

ofdmflexframegen print(q) prints the internal state of the ofdmflexframegen object.

16.7 ofdmflexframe (OFDM framing structures) 145

ofdmflexframegen is assembled(q) returns a flag indicating if the frame has been assembled yet
(1 if yes, 0 if no).

ofdmflexframegen setprops(q,props) sets the configurable properties of the frame generator,
including the number of S0 symbols, the length of the payload (in bytes), the error-detection
scheme (e.g. LIQUID CRC 24), the error-correction scheme(s) (e.g. LIQUID FEC HAMMING128),
and the modulation scheme/depth (e.g. LIQUID MODEM QPSK).

ofdmflexframegen getframelen(q) returns the number of OFDM symbols (not samples) in the
frame, including the preamble, header, and payload.

ofdmflexframegen assemble(q,*header,*payload,n) assembles the OFDM frame, internal to
the ofdmflexframegen object; with an 8-byte header, and an n-byte payload. Unlike the
flexframegen object, samples are not written to a buffer at this point, but are generated
with the writesymbol() method, below.

ofdmflexframegen writesymbol(q,*buffer,*num written) writes OFDM symbols (time series)
to the buffer, specifies the number of samples that have been written, and returns a flag
indicating if this symbol is the last in the frame. All symbols are M + c samples long except
the S0 symbols which are just M samples long. Therefore the buffer only needs to hold at
most M + c samples.

16.7.5 ofdmflexframesync

The ofdmflexframesync object is responsible for detecting frames generated by the ofdmflexframesync
object, decoding the header and payloads, and passing the results back to the user by way of a call-
back function. This listing gives a basic demonstration to the interface to the ofdmflexframegen

object:

1 // file: doc/listings/ofdmflexframesync.example.c

2 # include <liquid / liquid.h>

3

4 // callback function

5 int mycallback(unsigned char * _header,

6 int _header_valid,

7 unsigned char * _payload,

8 unsigned int _payload_len,

9 int _payload_valid,

10 framesyncstats_s _stats,

11 void * _userdata)

12 {

13 printf("***** callback invoked!\n");

14 return 0;

15 }

16

17 int main() {

18 // options

19 unsigned int M = 64; // number of subcarriers

20 unsigned int cp_len = 16; // cyclic prefix length

21 unsigned char p[M]; // subcarrier allocation (null/pilot/data)

146 16 FRAMING

22 void * userdata; // user-defined data

23

24 // initialize subcarrier allocation to default

25 ofdmframe_init_default_sctype(M, p);

26

27 // create frame synchronizer

28 ofdmflexframesync fs = ofdmflexframesync_create(M, cp_len, p, mycallback, userdata);

29

30 // grab samples from source and push through synchronizer

31 float complex buffer[20]; // time-domain buffer (any length)

32 {

33 // push received samples through synchronizer

34 ofdmflexframesync_execute(fs, buffer, 20);

35 }

36

37 // destroy the frame synchronizer object

38 ofdmflexframesync_destroy(fs);

39 }

Notice that the input buffer can be any length, regardless of the synchronizer object’s properties.
Listed below is the full interface to the ofdmflexframesync object.

ofdmflexframesync create(M,c,*p,*callback,*userdata) creates and returns an ofdmflexframegen

object with M subcarriers (M must be an even integer), a cyclic prefix length of c samples,
a subcarrier allocation determined by p, a user-defined callback function (see description,
below) and user-defined data pointer.

ofdmflexframesync destroy(q) destroys an ofdmflexframesync object, freeing all internally-
allocated memory.

ofdmflexframesync print(q) prints the internal properties of the ofdmflexframesync object to
the standard output.

ofdmflexframesync reset(q) resets the internal state of the ofdmflexframesync object.

ofdmflexframesync execute(q,*buffer,n) runs the synchronizer on an input buffer with n sam-
ples of type float complex. Whenever a frame is found and decoded, the synchronizer will
invoke the callback function given when created. The input buffer can be any length, irre-
spective of any of the properties of the frame.

ofdmflexframesync get rssi(q) queries the frame synchronizer for the received signal strength
of the input (given in decibels).

The callback function for the ofdmflexframesync object has seven arguments and looks like this:

int ofdmflexframesync_callback(unsigned char * _header,

int _header_valid,

unsigned char * _payload,

unsigned int _payload_len,

int _payload_valid,

framesyncstats_s _stats,

void * _userdata);

16.7 ofdmflexframe (OFDM framing structures) 147

The callback is typically defined to be static and is passed to the instance of ofdmflexframesync
object when it is created. The return value can be ignored for now and is reserved for future
development. Here is a brief description of the callback function’s arguments:

header is a volatile pointer to the 8 bytes of decoded user-defined header data from the frame
generator.

header valid is simply a flag to indicate if the header passed its cyclic redundancy check. If the
check fails then the header data have been corrupted beyond the point that internal error
correction can recover; in this situation the payload cannot be recovered.

payload is a volatile pointer to the decoded payload data. When the header cannot be decoded
(header valid == 0) this value is set to NULL.

payload len is the length (number of bytes) of the payload array. When the header cannot be
decoded (header valid == 0) this value is set to 0.

payload valid is simply a flag to indicate if the payload passed its cyclic redundancy check (“0”
means invalid, “1” means valid). As with the header, if this flag is zero then the payload
almost certainly contains errors.

stats is a synchronizer statistics construct (framesyncstats s) that indicates some useful PHY
information to the user (see §16.6).

userdata is the void pointer given to the ofdmflexframesync create() method. Typically this
pointer is a vehicle for getting the header and payload data (as well as any other pertinent
information) back to your main program.

16.7.6 Performance

Figure 39 shows the performance characteristics of the ofdmflexframe structure for M = 64
subcarriers with default subcarrier allocation. The frame can be detected with a 90% probability
with an SNR level of just -0.4 dB. Furthermore, the probability of detecting the frame and decoding
the header reaches 90% at just 2.6 dB SNR. Decoding the remainder of the frame depends on many
factors such as the modulation scheme and forward error-correction schemes applied. Here are a
few general guidelines for good performance:

1. Equalization improves with more subcarriers, but the carrier frequency offset requirements
have tighter restrictions;

2. While the interface supports nearly any number of subcarriers desired, synchronization greatly
improves with at least M = 32 active (pilot/data) subcarriers;

3. More pilot subcarriers can improve performance in low SNR environments at the penalty of
reduced throughput (fewer subcarriers are allocated for data);

4. Increasing the cyclic prefix is really only necessary for high multi-path environment with a
large delay spread. Capacity can be increased for most short-range applications by reducing
the cyclic prefix to 4 samples, regardless of the number of subcarriers;

148 16 FRAMING

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-6 -4 -2 0 2 4 6

P
ro

b
a

b
ili

ty
 o

f
D

e
te

c
ti
o

n
/D

e
c
o

d
in

g

SNR [dB]

Frame Detection
Header Decoding

Figure 39: Performance of the ofdmflexframe structure with M = 64 subcarriers (default
allocation).

5. Most hardware have highly non-linear RF front ends (mixers, amplifiers, etc.) which require
a transmit power back-off by a few dB to ensure linearity, particularly when many subcarriers
are used.

149

Table 7: Summary of Transcendental Math Interfaces

function interface

ln Γ(z) liquid lngammaf(z)

Γ(z) liquid gammaf(z)

ln γ(z, α) liquid lnlowergammaf(z,alpha)

γ(z, α) liquid lowergammaf(z,alpha)

ln Γ(z, α) liquid lnuppergammaf(z,alpha)

Γ(z, α) liquid uppergammaf(z,alpha)

n! liquid factorialf(n)

ln Iν(z) liquid lnbesselif(nu,z)

Iν(z) liquid besselif(nu,z)

I0(z) liquid besseli0f(z)

Jν(z) liquid besseljf(nu,z)

J0(z) liquid besselj0f(z)

Q(z) liquid Qf(z)

QM (α, β) liquid MarcumQf(M,alpha,beta)

Q1(α, β) liquid MarcumQ1f(alpha,beta)

sinc(z) liquid sincf(z)

dlog2(n)e liquid nextpow2(n)(
n
k

)
liquid nchoosek(n,k)

17 math

The math module implements several useful functions for digital signal processing including tran-
scendental function not necessarily in the standard C library, windowing functions, and polynomial
manipulation methods.

17.1 Transcendental Functions

This section describes the implementation and interface to transcendental functions not in the C
standard library including a full arrangement of Gamma and Bessel functions. Table 7 summarizes
the interfaces provided in liquid.

17.1.1 liquid gammaf(z), liquid lngammaf(z)

liquid computes Γ(z) from ln Γ(z) (see below) due to its steep, exponential response to z. The
complete Gamma function is defined as

Γ(z) ,
∫ ∞

0
tz−1e−tdt (68)

The upper an lower incomplete Gamma functions are described in Sections 17.1.3 and 17.1.2,
respectively. The natural log of the complete Gamma function is computed by splitting into discrete

150 17 MATH

piecewise sections:

ln [Γ(z)] ≈

undefined z < 0

ln Γ(z + 1)− ln(z) 0 ≤ z < 10
z
2 ln

(
2π
z

) (
ln
(
z + 1

12z−0.1/z

)
− 1
)

z ≥ 0.6

(69)

17.1.2 liquid lowergammaf(z,a), liquid lnlowergammaf(z,a) (lower incomplete Gamma)

Like Γ(z), liquid computes the lower incomplete gamma function γ(z, α) from its logarithm ln γ(z, α)
due to its steep, exponential response to z. The lower incomplete Gamma function is defined as

γ(z, α) ,
∫ α

0
tz−1e−tdt (70)

liquid computes the log of lower incomplete Gamma function as

ln γ(z, α) = z ln(α) + ln Γ(z)− α+ ln

[∞∑
k=0

αk

Γ(z + k + 1)

]
(71)

17.1.3 liquid uppergammaf(z,a), liquid lnuppergammaf(z,a) (upper incomplete Gamma)

Like Γ(z), liquid computes the upper incomplete gamma function Γ(z, α) from ln Γ(z, α) due to its
steep, exponential response to z. The complete Gamma function is defined as

Γ(z, α) ,
∫ ∞
α

tz−1e−tdt (72)

By definition the sum of the lower and upper incomplete gamma functions is the complete Gamma
function: Γ(z) = γ(z, α)+Γ(z, α). As such, liquid computes the upper incomplete Gamma function
as

Γ(z, α) = Γ(z)− γ(z, α) (73)

17.1.4 liquid factorialf(n)

liquid computes n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1 iteratively for small values of n, and with the
Gamma function for larger values. Specifically, n! = Γ(n+ 1).

17.1.5 liquid nchoosek()

liquid computes binomial coefficients using the liquid nchoosek() method:(
n

k

)
=

n!

(n− k)!k!
(74)

Because the arguments can explode for relatively large values of n and k, liquid uses the following
approximation under certain conditions:(

n

k

)
≈ exp

{
ln Γ(n+ 1)− ln Γ(n− k + 1)− ln Γ(k + 1)

}

17.1 Transcendental Functions 151

17.1.6 liquid nextpow2()

computes dlog2(x)e

17.1.7 liquid sinc(z)

The sinc function is defined as

sinc(z) =
sin(πz)

πz
(75)

Simply evaluating the above equation with finite precision for z results in a discontinuity for small
z, and is approximated by expanding the first few terms of the series

sinc(z) =

∞∏
k=1

cos
(

2−kπz
)

(76)

17.1.8 liquid lnbesselif(), liquid besselif(), liquid besseli0f()

Iν(z) is the modified Bessel function of the first kind and is particularly useful for filter design. An
iterative method for computing Iν comes from Gross(1995),

Iν(z) =
(z

2

)ν ∞∑
k=0

(
1
4z

2
)k

k!Γ(k + ν + 1)
(77)

Due to its steep response to z it is often useful to compute Iν(z) by first computing ln Iν(z) as

ln Iν(z) = ν ln(z/2) + ln

[∞∑
k=0

(
1
4z

2
)k

k!Γ(ν + k + 1)

]

= ν ln(z/2) + ln

[∞∑
k=0

exp
{

2k ln(z/2)− ln Γ(k + 1)− ln Γ(ν + k + 1)
}]

For ν = 0 a good approximation can be derived by using piecewise polynomials,

ln
[
ln (I0(z))

]
≈ c0 + c1t+ c2t

2 + c3t
3 (78)

where t = ln(z) and

{c0, c1, c2, c3} =

{-1.52624, 1.9597, -9.4287e-03, -7.0471e-04} t < 0.5

{-1.5531, 1.8936, -0.07972, -0.01333} 0.5 ≤ t < 2.3

{-1.2958, 1.7693, -0.1175, 0.006341} else.

This is a particularly useful approximation for the Kaiser window in fixed-point math where w[n]
is computed as the ratio of two large numbers.

152 17 MATH

17.1.9 liquid lnbesseljf(), liquid besselj0f()

Jν(z) is the Bessel function of the first kind and is found in Doppler filter design. liquid computes
Jν(z) using the series expansion

Jν(z) =

∞∑
k=0

(−1)k

22k+|v|k! (|v|+ k)!
z2k+|v| (79)

17.1.10 liquid Qf(), liquid MarcumQf(), liquid MarcumQ1f()

The Q-function is commonly used in signal processing and is defined as

Q(z) =
1

2

(
1− erf(z/

√
2)
)

=
1√
2π

∫ ∞
z

exp
{
−u2/2

}
du

Similarly Marcum’s Q-function is defined as the following, with an appropriate expansion:

QM (α, β) =

∫ ∞
β

u
(u
α

)M−1
exp

{
−u

2 + α2

2

}
IM−1(αu)du

= exp

{
−α

2 + β2

2

} ∞∑
k=1−M

(
α

β

)k
Ik(αβ)

where Iν is the modified Bessel function of the first kind (see §17.1.8). liquid implements QM (α, β)
with the function liquid MarcumQf(M,a,b) using the approximation [23, (25)]

QM (α, β) ≈ erfc(u), u =
β − α−M

σ2
, σ = M + 2α

which works over a reasonable range of M , α, and β. The special case for M = 1 is implemented
in liquid using the function liquid MarcumQ1f(M,a,b) using the expansion [22],

Q1(α, β) = exp

{
−α

2 + β2

2

} ∞∑
k=0

(
α

β

)k
Ik(αβ)

which converges quickly with a few iterations.

17.2 Complex Trigonometry

This section describes the implementation and interface to complex trigonometric functions not in
the C standard library. Table 7 summarizes the interfaces provided in liquid.

17.2.1 liquid csqrtf()

The function liquid csqrtf(z) computes the complex square root of a number

√
z =

√
r + a

2
+ jsgn

(
={z}

)√r − a
2

(80)

where r = |z|, a = <{z}, and sgn(t) = t/|t|.

17.2 Complex Trigonometry 153

Table 8: Summary of Complex Trigonometric Math Interfaces

function interface
√
z liquid csqrtf(z)

ez liquid cexpf(z)

ln(z) liquid clogf(z)

sin−1(z) liquid casinf(z)

cos−1(z) liquid cacosf(z)

tan−1(z) liquid catanf(z)

17.2.2 liquid cexpf()

The function liquid cexpf(z) computes the complex exponential of a number

ez = exp
{
a
}(

cos(b) + j sin(b)
)

(81)

where a = <{z} and b = ={z}.

17.2.3 liquid clogf()

The function liquid clogf(z) computes the complex natural logarithm of a number.

log(z) = log(|z|) + j arg(z) (82)

17.2.4 liquid cacosf()

The function liquid cacosf(z) computes the complex arccos of a number

arccos(z) =

{
−j log

(
z +
√
z2 − 1

)
sgn
(
<{z}

)
= sgn

(
={z}

)
−j log

(
z −
√
z2 − 1

)
otherwise

(83)

17.2.5 liquid casinf()

The function liquid casinf(z) computes the complex arcsin of a number

arcsin(z) =
π

2
− arccos(z) (84)

17.2.6 liquid catanf()

The function liquid catanf(z) computes the complex arctan of a number

arctan(z) =
j

2
log

(
1− jz
1 + jz

)
(85)

154 17 MATH

17.3 Windowing functions

This section describes the various windowing functions in the math module. These windowing
functions are useful for spectral approximation as they are compact in both the time and frequency
domains.

17.3.1 hamming(), (Hamming window)

The function hamming(n,N) computes the nth of N indices of the Hamming window:

w(n) = 0.53836− 0.46164 cos (2πn/(N − 1)) (86)

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -10 0 10 20

te
m

p
o

ra
l
w

in
d

o
w

Sample Index

-80

-70

-60

-50

-40

-30

-20

-10

 0

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

17.3.2 hann(), (Hann window)

The function hann(n,N) computes the nth of N indices of the Hann window:

w(n) = 0.5− 0.5 cos (2πn/(N − 1)) (87)

17.3 Windowing functions 155

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -10 0 10 20

te
m

p
o

ra
l
w

in
d

o
w

Sample Index

-80

-70

-60

-50

-40

-30

-20

-10

 0

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

17.3.3 blackmanharris(), (Blackman-harris window)

The function blackmanharris(n,N) computes the nth of N indices of the Blackman-harris window:

w(n) =

3∑
k=0

ak cos (2πkn/(N − 1)) (88)

where a0 = 0.35875, a1 = −0.48829, a2 = 0.14128, and a3 = −0.01168.

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -10 0 10 20

te
m

p
o

ra
l
w

in
d

o
w

Sample Index

-80

-70

-60

-50

-40

-30

-20

-10

 0

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

156 17 MATH

17.3.4 kaiser(), (Kaiser-Bessel window)

The function kaiser(n,N,dt,beta) computes the nth of N indices of the Kaiser-β window with a
shape parameter β:

w(n, β) =

I0

(
πβ

√
1−

(
n
N/2

)2
)

I0 (πβ)
(89)

where Iν(z) is the modified Bessel function of the first kind of order ν, and β is a parameter
controlling the width of the window and its stop-band attenuation. In liquid, I0(z) is computed using
liquid besseli0f() (see §17.1). A fractional sample offset ∆t can be introduced by substituting
n
N/2 with n+∆t

N/2 in (89).

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -10 0 10 20

te
m

p
o

ra
l
w

in
d

o
w

Sample Index

-80

-70

-60

-50

-40

-30

-20

-10

 0

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

17.3.5 liquid kbd window(), (Kaiser-Bessel derived window)

The function liquid kbd window(n,beta,*w) computes the n-point Kaiser-Bessel derived window
with a shape parameter β storing the result in the n-point array w. The length of the window must
be even.

17.4 Polynomials 157

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15 20

te
m

p
o

ra
l
w

in
d

o
w

Sample Index

-80

-70

-60

-50

-40

-30

-20

-10

 0

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

17.4 Polynomials

A number of liquid modules require polynomial manipulations, particularly those involving filter
design where transfer functions are represented as the explicit ratio of polynomials in z−1. This
sub-module is not intended to be complete, but rather is required for the proper functionality of
other modules. Like matrices, polynomials in liquid do not use a particular data type, but are
stored as memory arrays.

Pn(x) =
n∑
k=0

ckx
k = c0 + c1x+ c2x

2 + · · ·+ cnx
n (90)

An nth-order polynomial has n + 1 coefficients ordered in memory in increasing degree.18 For
example, a 2nd-order polynomial 0.1 − 2.4x + 1.3x2 stored in an array float c[] has c[0]=0.1,
c[1]=-2.4, and c[2]=1.3.

Notice that all routines for the type float are prefaced with polyf. This follows the naming
convention of the standard C library routines which append an f to the end of methods operating
on floating-point precision types. Similar matrix interfaces exist in liquid for double (poly), double
complex (polyc), and float complex (polycf).

17.4.1 polyf val()

The polyf val(*p,k,x) method evaluates the polynomial Pn(x) at x0 where the k coefficients are
stored in the input array p. Here is a brief example which evaluates P2(x) = 0.2 + 1.0x+ 0.4x2 at
x = 1.3:

float p[3] = {0.2f, 1.0f, 0.4f};

float x = 1.3f;

float y = polyf_val(p,3,x);

>>> y = 2.17599988

18Note that this convention is reversed from that used in octave [11].

158 17 MATH

17.4.2 polyf fit()

The polyf fit(*x,*y,n,*p,k) method fits data to a polynomial of order k − 1 from n sam-
ples using the least-squares method on the input data vectors x = [x0, x1, · · · , xn−1]T and y =
[y0, y1, · · · , yn−1]T . Internally liquid uses matrix algebra to solve the system of equations

p =
(
XTX

)−1
XTy (91)

where

X =

1 x0 x2

0 · · · xk0
1 x1 x2

1 · · · xk1

1 xn−1 x2
n−1 · · · xkn−1

 (92)

For example this script fits the 4 data samples to a linear (first-order, two coefficients) polynomial:

float x[4] = {0.0f, 1.0f, 2.0f, 3.0f};

float y[4] = {0.85f, 3.07f, 5.07f, 7.16f};

float p[2];

polyf_fit(x,y,4,p,2);

>>> p = { 0.89800072, 2.09299946}

17.4.3 polyf fit lagrange()

The polyf fit lagrange(*x,*y,n,*p) method fit a dataset of n sample points to exact polynomial
of order n − 1 using Lagrange interpolation. Given input vectors x = [x0, x1, · · · , xn−1]T and
y = [y0, y1, · · · , yn−1]T , the interpolating polynomial is

Pn−1(x) =
n−1∑
j=0

yj n−1∏
k=0
k 6=j

x− xk
xj − xk

 (93)

For example this script fits the 4 data samples to a cubic (third-order, four coefficients) polynomial:

float x[4] = {0.0f, 1.0f, 2.0f, 3.0f};

float y[4] = {0.85f, 3.07f, 5.07f, 7.16f};

float p[4];

polyf_fit_lagrange(x,y,4,p);

>>> p = { 0.85000002, 2.43333268, -0.26499939, 0.05166650}

Notice that polyf fit lagrange(x,y,n,p) is mathematically equivalent to polyf fit(x,y,n,p,n),
but is computed in fewer steps. See also polyf expandroots.

17.4.4 polyf interp lagrange()

The polyf interp lagrange(*x,*y,n,x0) method uses Lagrange polynomials to find the inter-
polant (ẋ, ẏ) from a set of n pairs x = [x0, x1, · · · , xn−1]T and y = [y0, y1, · · · , yn−1]T .

ẏ =

n−1∑
j=0

yj n−1∏
k=0
k 6=j

ẋ− xk
xj − xk

 (94)

For example this script interpolates between the 4 data points

17.4 Polynomials 159

-1

 0

 1

-1 0 1

y

x

x0 = 1.0000, w0 = 1.0, y0 = -0.9841

x1 = 0.9659, w1 = -2.0, y1 = -0.7492

x2 = 0.8660, w2 = 2.0, y2 = 0.6828

x3 = 0.7071, w3 = -2.0, y3 = -0.1521

x4 = 0.5000, w4 = 2.0, y4 = 0.3191

x5 = 0.2588, w5 = -2.0, y5 = -0.8635

x6 = -0.0000, w6 = 2.0, y6 = 0.8912

x7 = -0.2588, w7 = -2.0, y7 = -0.1003

x8 = -0.5000, w8 = 2.0, y8 = -0.5784

x9 = -0.7071, w9 = -2.0, y9 = 0.7096

x10 =-0.8660, w10 = 2.0, y10 = -0.1889

x11 =-0.9659, w11 = -2.0, y11 = -0.9764

x12 =-1.0000, w12 = 1.0, y12 = -0.7229

Figure 40: polyf fit lagrange barycentric example

float x[4] = {0.0f, 1.0f, 2.0f, 3.0f};

float y[4] = {0.85f, 3.07f, 5.07f, 7.16f};

float x0 = 0.5f;

float y0 = polyf_interp_lagrange(x,y,4,x0);

>>> y0 = 2.00687504

See also polyf fit lagrange().

17.4.5 polyf fit lagrange barycentric()

The polyf fit lagrange barycentric(*x,n,*w) method computes the barycentric weights w of
x via

wj =
1∏

k 6=j (xj − xk)
(95)

which can be used to compute the interpolant (ẋ, ẏ) with fewer computations.

float x[4] = {0.0f, 1.0f, 2.0f, 3.0f};

float w[4];

polyf_fit_lagrange_barycentric(x,4,w);

>>> w = { 1.00000000, -3.00000000, 3.00000000, -1.00000000}

160 17 MATH

17.4.6 polyf val lagrange barycentric()

The polyf val lagrange barycentric(*x,*y,*w,x0,n) method computes the interpolant (ẋ, ẏ)
given the barycentric weights w (defined above) as

ẏ =

k−1∑
j=0

wjyj/(ẋ− xj)

k−1∑
j=0

wj/(ẋ− xj)
(96)

This is the preferred method for computing Lagrange interpolating polynomials, particularly if x
is unchanging. The function returns ẏ if ẋ is equal to any xj .

float x[4] = {0.0f, 1.0f, 2.0f, 3.0f};

float y[4] = {0.85f, 3.07f, 5.07f, 7.16f};

float w[4];

polyf_fit_lagrange_barycentric(x,4,w);

float x0 = 0.5f;

float y0 = polyf_val_lagrange_barycentric(x,y,w,x0,4);

>>> y0 = 2.00687504

Lagrange polynomials of the barycentric form are used heavily in liquid’s implementation of the
Parks-McClellan algorithm (firdespm) for filter design (see §15.5.5).

17.4.7 polyf expandbinomial()

The polyf expandbinomial(n,*p) method expands the a polynomial as a binomial series

Pn(x) = (x+ 1)n =
n∑
k=0

(
n

k

)
xk (97)

For example the following script will compute P3(x) = (1 + x)3:

float p[4];

polyf_expandbinomial(3,p);

>>> p = { 1.00000000, 3.00000000, 3.00000000, 1.00000000}

17.4.8 polyf expandbinomial pm()

Expands the a polynomial as an alternating binomial series

Pn(x) = (x+ 1)m(x− 1)n−m =

{
m∑
k=0

(
n

k

)
xk

}{
n−m∑
k=0

(
n

k

)
(−x)k

}
(98)

For example the following script will compute P3(x) = (1 + x)2(1− x):

float p[4];

polyf_expandbinomial_pm(2,1,p);

>>> p = { 1.00000000, 1.00000000, -1.00000000, -1.00000000}

17.4 Polynomials 161

17.4.9 polyf expandroots()

The polyf expandroots(*r,n,*p) method expands the a polynomial based on its roots

Pn(x) =
n−1∏
k=0

(x− rk) (99)

where rk are the roots of Pn(x). For example, this script will expand the polynomial P3(x) =
(x− 1)(x+ 2)(x− 3) which has roots {1,−2, 3}:

float roots[3] = {1.0f, -2.0f, 3.0f};

float p[4];

polyf_expandroots(roots,3,p);

>>> p = { 6.00000000, -5.00000000, -2.00000000, 1.00000000}

17.4.10 polyf expandroots2()

The polyf expandroots2(*a,*b,n,*p) method expands the a polynomial as

Pn(x) =
n−1∏
k=0

(bkx− ak) (100)

by first factoring out the bk terms, invoking polyf expandroots(), and multiplying the result by∏
k bk. For example, this script will expand the polynomial P3(x) = (2x− 1)(−3x+ 2)(−x− 3):

float b[3] = { 2.0f, -3.0f, -1.0f};

float a[3] = { 1.0f, -2.0f, 3.0f};

float p[4];

polyf_expandroots2(b,a,3,p);

>>> p = { 6.00000000, 11.00000000, -19.00000000, 6.00000000}

17.4.11 polyf findroots()

The polyf findroots(*p,n,*r) method finds the n roots of the nth-order polynomial using
Bairstow’s method. For an nth-order polynomial Pn(x) given by

Pn(x) =

n−1∏
k=0

(x− rk) (101)

there exists at least one quadratic polynomial p2(x) = u+ vx+x2 which exactly divides Pn(x) and
has two roots (possibly complex)

r0 =
1

2

(
−v −

√
v2 − 4u

)
, r1 =

1

2

(
−v +

√
v2 − 4u

)
(102)

If indeed the roots r0 and r1 are complex, they are also complex conjugates. Bairstow’s method
uses Newtonian iterations to find a pair u and v which are both finite and real-valued. This method
has several advantages over other methods

• iterations operate on real-valued math, even if the roots are complex

162 17 MATH

• the algorithm is capable of handling multiple roots (unlike the Durand-Kerner method), i.e.
Pn(x) = (x− 2)(x− 2)(x− 2) · · ·

• the algorithm does not rely on expanding the full polynomial and is therefore resilient to
machine precision

Each iteration of Bairstow’s algorithm reduces the original polynomial order by two, eventually
collapsing the polynomial. The initial choice of u and v determine both algorithm convergence and
speed.

liquid implements Bairstow’s method with the polyf findroots() function which accepts an
nth-order polynomial in standard expanded form and computes its n roots. The last term of the
polynomial (highest order) cannot be zero, otherwise the algorithm will not converge.

17.4.12 polyf mul()

The polyf mul(*P,n,*Q,m,*S) method multiplies two polynomials Pn(x) and Qm(x) to produce
the resulting polynomial Sn+m−1(x).

17.5 Modular Arithmetic

17.5.1 liquid is prime(n)

Returns 1 if n is prime, 0 otherwise.

17.5.2 liquid factor(n,*factors,*num factors)

Computes all the prime factors of a number n in ascending order. Example:

unsigned int factors[LIQUID_MAX_FACTORS];

unsigned int num_factors;

liquid_factor(280, factors, &num_factors);

>>> num_factors = 5

>>> factors = { 2, 2, 2, 5, 7 }

17.5.3 liquid unique factor(n,*factors,*num factors)

Computes all the unique prime factors of a number n in ascending order. Example:

unsigned int factors[LIQUID_MAX_FACTORS];

unsigned int num_factors;

liquid_unique_factor(280, factors, &num_factors);

>>> num_factors = 3

>>> factors = { 2, 5, 7 }

17.5.4 liquid modpow(base,exp,n)

Computes c = bx (mod n)

17.5.5 liquid primitive root(n)

Finds and returns smallest primitive root of a number n.

17.5 Modular Arithmetic 163

17.5.6 liquid primitive root prime(n)

Finds and returns smallest primitive root of a prime number n.

17.5.7 liquid totient(n)

Euler’s totient function ϕ(n) computes the number of positive integers less than or equal to n that
are relatively prime to n. The totient function is computed as

ϕ(n) = n
∏
p|n

(
1− 1

p

)

where the product is computed over the unique factors of n. For example, if n = 24 = 23 · 3, then
ϕ(24) = 24

(
1− 1

2

) (
1− 1

3

)
= 8.

164 18 MATRIX

18 matrix

Matrices are used for solving linear systems of equations and are used extensively in polynomial
fitting, adaptive equalization, and filter design. In liquid, matrices are represented as just arrays
of a single dimension, and do not rely on special objects for their manipulation. This is to help
portability of the code and ease of integration into other libraries. Here is a simple example of the
matrix interface:

1 // file: doc/listings/matrix.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // designate X as a 4 x 4 matrix

6 float X[16] = {

7 0.84382, -2.38304, 1.43061, -1.66604,

8 3.99475, 0.88066, 4.69373, 0.44563,

9 7.28072, -2.06608, 0.67074, 9.80657,

10 6.07741, -3.93099, 1.22826, -0.42142};

11 matrixf_print(X,4,4);

12

13 // L/U decomp (Doolittle’s method)

14 float L[16], U[16], P[16];

15 matrixf_ludecomp_doolittle(X,4,4,L,U,P);

16 }

Notice that all routines for the type float are prefaced with matrixf. This follows the naming
convention of the standard C library routines which append an f to the end of methods operating
on floating-point precision types. Similar matrix interfaces exist in liquid for double (matrix),
double complex (matrixc), and float complex (matrixcf).

18.1 Basic math operations

This section describes the basic matrix math operations, including addition, subtraction, point-wise
multiplication and division, transposition, and initializing the identity matrix.

18.1.1 matrix access (access element)

Because matrices in liquid are really just one-dimensional arrays, indexing matrix values for storage
or retrieval is as straightforward as indexing the array itself. liquid also provides a simple macro
for ensuring the proper value is returned. matrix access(X,R,C,r,c) will access the element of a
R × C matrix X at row r and column c. This method is really just a pre-processor macro which
performs a literal string replacement

#define matrix_access(X,R,C,r,c) ((X)[(r)*(C)+(c)])

and can be used for both setting and retrieving values of a matrix. For example,

X =

0.406911 0.118444 0.923281 0.827254 0.463265

0.038897 0.132381 0.061137 0.880045 0.570341

18.1 Basic math operations 165

0.151206 0.439508 0.695207 0.215935 0.999683

0.808384 0.601597 0.149171 0.975722 0.205819

float v = matrix_access(X,4,5,0,1);

v =

0.118444

matrix_access(X,4,5,2,3) = 0;

X =

0.406911 0.118444 0.923281 0.827254 0.463265

0.038897 0.132381 0.061137 0.880045 0.570341

0.151206 0.439508 0.695207 0.0 0.999683

0.808384 0.601597 0.149171 0.975722 0.205819

Because this method is really just a macro, there is no error-checking to ensure that one is accessing
the matrix within its memory bounds. Therefore, special care must be taken when programming.
Furthermore, matrix access() can be used for all matrix types (matrixf, matrixcf, etc.).

18.1.2 matrixf add, matrixf sub, matrixf pmul, and matrixf pdiv (scalar math opera-
tions)

The matrixf add(*x,*y,*z,m,n), matrixf sub(*x,*y,*z,m,n), matrixf pmul(*x,*y,*z,m,n),
and matrixf pdiv(*x,*y,*z,m,n) methods perform point-wise (scalar) addition, subtraction,
multiplication, and division of the elements of two n × m matrices, X and Y . That is, Zi,k =
Xi,k +Y i,k for all i, k. The same holds true for subtraction, multiplication, and division. It is very
important to understand the difference between the methods matrixf pmul() and matrixf mul(),
as well as matrixf pdiv() and matrixf div(). In each case the latter performs a vastly different
operation from matrixf mul() and matrixf div() (see Sections 18.2.3 and 18.3.2, respectively).

X = Y =

0.59027 0.83429 0.764108 0.741641

0.67779 0.19793 0.660932 0.041723

0.95075 0.33980 0.972282 0.347090

matrixf_pmul(X,Y,Z,2,3);

Z =

0.4510300 0.6187437

0.4479731 0.0082582

0.9243971 0.1179412

18.1.3 matrixf trans(), matrixf hermitian() (transpose matrix)

The matrixf trans(X,m,n,XT) method performs the conjugate matrix transpose operation on an
m × n matrix X. That is, the matrix is flipped on its main diagonal and the conjugate of each
element is taken. Formally, AT

i,j = A∗j,i. Here’s a simple example:

[
0 1 2
3 4 5

]T
=

 0 3
1 4
2 5

166 18 MATRIX

Similarly, the matrixf hermitian(X,m,n,XH) computes the Hermitian transpose which is identical
to the regular transpose but without the conjugation operation, viz AH

i,j = Aj,i.

18.1.4 matrixf eye() (identity matrix)

The matrixf eye(*x,n) method generates the n× n identity matrix In:

In =

1 0 · · · 0
0 1 · · · 0

0 0 · · · 1

 (103)

18.2 Elementary math operations

This section describes elementary math operations for linear systems of equations.

18.2.1 matrixf swaprows() (swap rows)

Matrix row-swapping is often necessary to express a matrix in its row-reduced echelon form. The
matrixf swaprows(*X,m,n,i,j) method simply swaps rows i and j of an m× n matrix X, viz

x =

0.84381998 -2.38303995 1.43060994 -1.66603994

3.99475002 0.88066000 4.69372988 0.44563001

7.28072023 -2.06608009 0.67074001 9.80657005

6.07741022 -3.93098998 1.22826004 -0.42142001

matrixf_swaprows(x,4,4,0,2);

7.28072023 -2.06608009 0.67074001 9.80657005

3.99475002 0.88066000 4.69372988 0.44563001

0.84381998 -2.38303995 1.43060994 -1.66603994

6.07741022 -3.93098998 1.22826004 -0.42142001

18.2.2 matrixf pivot() (pivoting)

[NOTE: terminology for “pivot” is different from literature.] Given an n×m matrix A,

A =

A0,0 A0,1 · · · A0,m−1

A1,0 A1,1 · · · A1,m−1

An−1,0 An−1,1 · · · An−1,m−1

pivoting A around Aa,b gives

Bi,j =

(
Ai,b

Aa,b

)
Aa,j −Ai,j∀i 6= a

The pivot element must not be zero. Row a is left unchanged in B. All elements of B in column
b are zero except for row a. This is accomplished in liquid with the matrixf pivot(*A,m,n,i,j)

method. For our example 4× 4 matrix x, pivoting around x1,2 gives:

18.3 Complex math operations 167

matrixf_pivot(x,4,4,1,2);

0.37374675 2.65145779 0.00000000 1.80186427

3.99475002 0.88066000 4.69372988 0.44563001

-6.70986557 2.19192743 0.00000000 -9.74288940

-5.03205967 4.16144180 0.00000000 0.53803295

18.2.3 matrixf mul() (multiplication)

Multiplication of two input matrices A and B is accomplished with the matrixf mul(*A,ma,na,*B,mb,nb,*C,mc,nc)

method, and is not to be confused with matrixf pmul() in §18.1.2. If A is m× n and B is n× p,
then their product is computed as

(
AB

)
i,j

=

n−1∑
r=0

Ai,rBr,j (104)

Note that the number of columns of A must be equal to the number of rows of B, and that the
resulting matrix is of size m× p (the number of rows in A and columns in B).

A = B =

1 2 3 1 2 3

4 5 6 4 5 6

7 8 9

matrixf_mul(A,2,3, B,3,3, C,2,3);

C =

30 36 42

66 81 96

18.2.4 Transpose multiplication

liquid also implements transpose-multiplication operations on an m×n matrix X, commonly used
in signal processing. §18.1.3 describes the difference between the (·)T and (·)H operations. The
interface for transpose-multiplications in liquid is tabulated below for an input m× n matrix X.

operation output dimensions interface

XXT m×m matrixcf mul transpose(x,m,n,xxT)

XXH m×m matrixcf mul hermitian(x,m,n,xxH)

XTX n× n matrixcf transpose mul(x,m,n,xTx)

XHX n× n matrixcf transpose mul(x,m,n,xHx)

18.3 Complex math operations

More complex math operations are described here, including matrix inversion, square matrix de-
terminant, Gauss-Jordan elimination, and lower/upper decomposition routines using both Crout’s
and Doolittle’s methods.

168 18 MATRIX

18.3.1 matrixf inv (inverse)

Matrix inversion is accomplished with the matrixf inv(*X,m,n) method.19 Given an n×n matrix
A, liquid augments with In:

[A|In] =

A0,0 A0,1 · · · A0,m−1 1 0 · · · 0
A1,0 A1,1 · · · A1,m−1 0 1 · · · 0

An−1,0 An−1,1 · · · An−1,m−1 0 0 · · · 1

Next liquid performs elementary operations to convert to its row-reduced echelon form. The result-
ing matrix has the identity matrix on the left and A−1 on its right, viz

[
In|A−1

]
=

1 0 · · · 0 A−1

0,0 A−1
0,1 · · · A−1

0,m−1

0 1 · · · 0 A−1
1,0 A−1

1,1 · · · A−1
1,m−1

0 0 · · · 1 A−1
n−1,0 A−1

n−1,1 · · · A−1
n−1,m−1

The matrixf inv() method uses Gauss-Jordan elimination (see matrixf gjelim()) for row re-
duction and back-substitution. Pivot elements in A with the largest magnitude are chosen to help
stability in floating-point arithmetic.

matrixf_inv(x,4,4);

-0.33453920 0.04643385 -0.04868321 0.23879384

-0.42204019 0.12152659 -0.07431178 0.06774280

0.35104612 0.15256262 0.04403552 -0.20177667

0.13544561 -0.01930523 0.11944833 -0.14921521

18.3.2 matrixf div()

The matrixf div(*X,*Y,*Z,*n) method simply computes Z = Y −1X where X, Y , and Z are
all n× n matrices.

18.3.3 matrixf linsolve() (solve linear system of equations)

The matrixf linsolve(*A,n,*b,*x,opts) method solves a set of n linear equations Ax = b
where A is an n × n matrix, and x and b are n × 1 vectors. The opts argument is reserved for
future development and can be ignored by setting to NULL.

18.3.4 matrixf cgsolve() (solve linear system of equations)

The matrixf cgsolve(*A,n,*b,*x,opts) method solves Ax = b using the conjugate gradient
method where A is an n × n symmetric positive-definite matrix. The opts argument is reserved
for future development and can be ignored by setting to NULL. Listed below is a basic example:

19While matrix inversion requires a square matrix, liquid internally checks to ensure m = n on the input size for
X.

18.3 Complex math operations 169

A =

2.9002075 0.1722705 1.3046706 1.8082311

0.1722705 1.0730995 0.2497573 0.1470398

1.3046706 0.2497573 0.8930279 1.1471686

1.8082311 0.1470398 1.1471686 1.5155975

b =

11.7622252

-1.0541668

5.7372437

8.1291904

matrixf_cgsolve(A,4,4, x_hat, NULL)

x_hat =

2.8664699

-1.8786657

1.1224079

1.2764599

For a more complete example, see examples/cgsolve example.c located under the main project
directory.

18.3.5 matrixf det() (determinant)

The matrixf det(*X,m,n) method computes the determinant of an n × n matrix X. In liq-
uid, the determinant is computed by L/U decomposition of A using Doolittle’s method (see
matrixf ludecomp doolittle) and then computing the product of the diagonal elements of U , viz

det (A) = |A| =
n−1∏
k=0

Uk,k

This is equivalent to performing L/U decomposition using Crout’s method and then computing the
product of the diagonal elements of L.

matrixf_det(X,4,4) = 585.40289307

18.3.6 matrixf ludecomp crout() (LU Decomposition, Crout’s Method)

Crout’s method decomposes a non-singular n × n matrix A into a product of a lower triangular
n × n matrix L and an upper triangular n × n matrix U . In fact, U is a unit upper triangular
matrix (its values along the diagonal are 1). The matrixf ludecomp crout(*A,m,n,*L,*U,*P)

implements Crout’s method.

Li,k = Ai,k −
k−1∑
t=0

Li,tU t,k ∀k ∈ {0, n− 1}, i ∈ {k, n− 1}

Uk,j =

[
Ak,j −

k−1∑
t=0

Lk,tU t,j

]
/Lk,k ∀k ∈ {0, n− 1}, j ∈ {k + 1, n− 1}

170 18 MATRIX

matrixf_ludecomp_crout(X,4,4,L,U,P)

L =

0.84381998 0.00000000 0.00000000 0.00000000

3.99475002 12.16227055 0.00000000 0.00000000

7.28072023 18.49547005 -8.51144791 0.00000000

6.07741022 13.23228073 -6.81350422 -6.70173073

U =

1.00000000 -2.82410932 1.69539714 -1.97440207

0.00000000 1.00000000 -0.17093502 0.68514121

0.00000000 0.00000000 1.00000000 -1.35225296

0.00000000 0.00000000 0.00000000 1.00000000

18.3.7 matrixf ludecomp doolittle() (LU Decomposition, Doolittle’s Method)

Doolittle’s method is similar to Crout’s except it is the lower triangular matrix that is left with
ones on the diagonal. The update algorithm is similar to Crout’s but with a slight variation: the
upper triangular matrix is computed first. The matrixf ludecomp doolittle(*A,m,n,*L,*U,*P)

implements Doolittle’s method.

Uk,j = Ak,j −
k−1∑
t=0

Lk,tU t,j ∀k ∈ {0, n− 1}, j ∈ {k, n− 1}

Li,k =

[
Ai,k −

k−1∑
t=0

Li,tU t,k

]
/Uk,k ∀k ∈ {0, n− 1}, i ∈ {k + 1, n− 1}

Here is a simple example:

matrixf_ludecomp_doolittle(X,4,4,L,U,P)

L =

1.00000000 0.00000000 0.00000000 0.00000000

4.73412609 1.00000000 0.00000000 0.00000000

8.62828636 1.52072513 1.00000000 0.00000000

7.20225906 1.08797777 0.80051047 1.00000000

U =

0.84381998 -2.38303995 1.43060994 -1.66603994

0.00000000 12.16227150 -2.07895803 8.33287334

0.00000000 0.00000000 -8.51144791 11.50963116

0.00000000 0.00000000 0.00000000 -6.70172977

18.3.8 matrixf qrdecomp gramschmidt() (QR Decomposition, Gram-Schmidt algorithm)

liquid implements Q/R decomposition with the matrixf qrdecomp gramschmidt(*A,m,n,*Q,*R)

method which factors a non-singular n× n matrix A into product of an orthogonal matrix Q and
an upper triangular matrix R, each n× n. That is, A = QR where QTQ = In and Ri,j = 0 ∀i>j .
Building on the previous example for our test 4× 4 matrix X, the Q/R factorization is

matrixf_qrdecomp_gramschmidt(X,4,4,Q,R)

Q =

0.08172275 -0.57793844 0.57207584 0.57622749

0.38688579 0.63226062 0.66619849 -0.08213031

18.3 Complex math operations 171

0.70512730 0.13563085 -0.47556636 0.50816941

0.58858842 -0.49783322 0.05239720 -0.63480729

R =

10.32539940 -3.62461853 3.12874746 6.70309162

0.00000000 3.61081028 1.62036073 2.78449297

0.00000000 0.00000000 3.69074893 -5.34197950

0.00000000 0.00000000 0.00000000 4.25430155

18.3.9 matrixf chol() (Cholesky Decomposition)

Compute Cholesky decomposition of an n × n symmetric/Hermitian positive-definite matrix as
A = LLT where L is n×n and lower triangular. An n×n matrix is positive definite if <{vTAv} > 0
for all non-zero vectors v. Note that A can be either complex or real. Shown below is an example
of the Cholesky decomposition of a 4× 4 positive definite real matrix.

A =

1.0201000 -1.4341999 0.3232000 -1.0302000

-1.4341999 2.2663999 0.5506001 1.2883999

0.3232000 0.5506001 4.2325001 -1.4646000

-1.0302000 1.2883999 -1.4646000 5.0101995

matrixf_chol(A,4,Lp)

1.0100000 0.0000000 0.0000000 0.0000000

-1.4200000 0.5000000 0.0000000 0.0000000

0.3200000 2.0100000 0.3000003 0.0000000

-1.0200000 -0.3199999 -1.6499993 1.0700010

18.3.10 matrixf gjelim() (Gauss-Jordan Elimination)

The matrixf gjelim(*X,m,n) method in liquid performs the Gauss-Jordan elimination on a matrix
X. Gauss-Jordan elimination converts a m × n matrix into its row-reduced echelon form using
elementary matrix operations (e.g. pivoting). This can be used to solve a linear system of n
equations Ax = b for the unknown vector x

A0,0 A0,1 · · · A0,n−1

A1,0 A1,1 · · · A1,n−1

An−1,0 An−1,1 · · · An−1,n−1

x0

x1

xn−1

 =

b0
b1

bn−1

The solution for x is given by inverting A and multiplying by b, viz

x = A−1b

This is also equivalent to augmenting A with b and converting it to its row-reduced echelon form.
If A is non-singular the resulting n× n+ 1 matrix will hold x in its last column. The row-reduced
echelon form of a matrix is computed in liquid using the Gauss-Jordan elimination algorithm, and
can be invoked as such:

Ab =

0.84381998 -2.38303995 1.43060994 -1.66603994 0.91488999

3.99475002 0.88066000 4.69372988 0.44563001 0.71789002

172 18 MATRIX

7.28072023 -2.06608009 0.67074001 9.80657005 1.06552994

6.07741022 -3.93098998 1.22826004 -0.42142001 -0.81707001

matrixf_gjelim(Ab,4,5)

1.00000000 -0.00000000 0.00000000 -0.00000000 -0.51971692

-0.00000000 1.00000000 0.00000000 0.00000000 -0.43340963

-0.00000000 -0.00000000 1.00000000 -0.00000000 0.64247853

0.00000000 -0.00000000 -0.00000000 0.99999994 0.35925382

Notice that the result contains In in its first n rows and n columns (to within machine precision).20

20row permutations (swapping) might have occurred.

173

19 modem

The modem module implements a set of (mod)ulation/(dem)odulation schemes for encoding infor-
mation into signals. For the analog modems, samples are encoded according to frequency or analog
modulation. For the digital modems, data bits are encoded into symbols representing carrier fre-
quency, phase, amplitude, etc. This section gives a brief overview of modulation schemes available
in liquid, and provides a brief description of the interfaces.

19.1 Analog modulation schemes

This section describes the two basic analog modulation schemes available in liquid: frequency
modulation and amplitude modulation implemented with the respective freqmodem and ampmodem

objects.

19.1.1 freqmodem (analog FM)

The freqmodem object implements an analog frequency modulation (FM) modulator and demodu-
lator. Given an input message signal −1 ≤ s(t) ≤ 1, the transmitted signal is

s(t) = exp

{
j2πkfc

∫ t

0
s(τ)dτ

}
(105)

where fc is the carrier frequency, and k is the modulation index. The modulation index governs the
relative bandwidth of the signal. Two options for demodulation are possible: observing the instan-
taneous frequency on the output of a phase-locked loop, or computing the instantaneous frequency
using the delay-conjugate method. An example of the freqmodem can be found in Figure 41

An example of the freqmodem interface is listed below.

1 // file: doc/listings/freqmodem.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 float mod_index = 0.1f; // modulation index (bandwidth)

6 float fc = 0.0f; // FM carrier

7 liquid_freqmodem_type type = LIQUID_FREQMODEM_DELAYCONJ;

8

9 // create mod/demod objects

10 freqmodem mod = freqmodem_create(mod_index,fc,type);

11 freqmodem demod = freqmodem_create(mod_index,fc,type);

12

13 float s; // input message

14 float complex x; // modulated

15 float y; // output/demodulated message

16

17 // repeat as necessary

18 {

19 // modulate signal

20 freqmodem_modulate(mod, s, &x);

21

22 // demodulate signal

174 19 MODEM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 50 100 150 200

in
p

u
t/

o
u

tp
u

t
s
ig

n
a

l

Sample Index

input
demodulated

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 50 100 150 200

m
o

d
u

la
te

d
 s

ig
n

a
l

Sample Index

real
imag

(a) Time Series

-100

-80

-60

-40

-20

 0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n
s
it
y
 [

d
B

]

Normalized Frequency

(b) Power Spectral Density

Figure 41: freqmodem demonstration modulating an audio signal with a modulation index of
k = 0.1 and a relative carrier frequency fc/Fs = 0.1.

19.1 Analog modulation schemes 175

23 freqmodem_demodulate(demod, x, &y);

24 }

25

26 // clean up objects

27 freqmodem_destroy(mod);

28 freqmodem_destroy(demod);

29 }

A more detailed example can be found in examples/freqmodem example.c located under the main
liquid project source directory. Listed below is the full interface to the freqmodem object for analog
frequency modulation/demodulation.

freqmodem create(k,fc,type) creates and returns an freqmodem object with a modulation index
k, a carrier frequency −0.5 < fc < 0.5, and a demodulation type defined by type. The
demodulation type can either be LIQUID FREQMODEM PLL which uses a phased-locked loop or
LIQUID FREQMODEM DELAYCONJ which uses the delay conjugate method.

freqmodem destroy(q) destroys an freqmodem object, freeing all internally-allocated memory.

freqmodem reset(q) resets the state of the freqmodem object.

freqmodem print(q) prints the internal state of the freqmodem object.

freqmodem modulate(q,x,*y) modulates the input sample x storing the output to y.

freqmodem demodulate(q,y,*x) demodulates the input sample y storing the output to x.

19.1.2 ampmodem (analog AM)

The ampmodem object implements an analog amplitude modulation (AM) modulator/demodulator
pair. Two basic transmission schemes are available: single side-band (SSB), and double side-band
(DSB). For an input message signal −1 ≤ s(t) ≤ 1, the double side-band transmitted signal is

xDSB(t) =

{
s(t)ej2πfct suppressed carrier
1
2

(
1 + ks(t)

)
ej2πfct unsuppressed carrier

(106)

where fc is the carrier frequency, and k is the modulation index. For single side-band, only the
upper (USB) or lower half (LSB) of the spectrum is transmitted. The opposing half of the spec-
trum is rejected using a Hilbert transform (see §15.6). Let ṡ(t) represent the Hilbert transform
of the message signal s(t) such that its Fourier transform is non-zero only for positive frequency
components, viz

Ṡ(ω) = F {ṡ(t)} =

{
S(ω) = F {s(t)} ω > 0

0 ω ≤ 0
(107)

Consequently the transmitted upper side-band signal is

xUSB(t) =

{
ṡ(t)ej2πfct suppressed carrier
1
2

(
1 + kṡ(t)

)
ej2πfct unsuppressed carrier

(108)

176 19 MODEM

For lower single side-band, ṡ(t) is simply conjugated. For suppressed carrier modulation the re-
ceiver uses a phase-locked loop for carrier frequency and phase tracking. When the carrier is not
suppressed the receiver demodulates using a simple peak detector and IIR bias removal filter. An
example of the freqmodem interface is listed below.

1 // file: doc/listings/ampmodem.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 float mod_index = 0.1f; // modulation index (bandwidth)

6 float fc = 0.0f; // AM carrier

7 liquid_ampmodem_type type = LIQUID_AMPMODEM_USB;

8 int suppressed_carrier = 0; // suppress the carrier?

9

10 // create mod/demod objects

11 ampmodem mod = ampmodem_create(mod_index, fc, type, suppressed_carrier);

12 ampmodem demod = ampmodem_create(mod_index, fc, type, suppressed_carrier);

13

14 float s; // input message

15 float complex x; // modulated

16 float y; // output/demodulated message

17

18 // repeat as necessary

19 {

20 // modulate signal

21 ampmodem_modulate(mod, s, &x);

22

23 // demodulate signal

24 ampmodem_demodulate(demod, x, &y);

25 }

26

27 // clean up objects

28 ampmodem_destroy(mod);

29 ampmodem_destroy(demod);

30 }

A more detailed example can be found in examples/ampmodem example.c located under the main
liquid project source directory. Listed below is the full interface to the ampmodem object for analog
frequency modulation/demodulation.

ampmodem create(k,fc,type,suppressed carrier) creates and returns an ampmodem object with
a modulation index k, a carrier fc, a modulation scheme defined by type, and a binary flag
specifying whether the carrier should be suppressed. The modulation type can either be
LIQUID AMPMODEM DSB (double side-band), LIQUID AMPMODEM USB (single upper side-band),
or LIQUID AMPMODEM LSB (single lower side-band). method.

ampmodem destroy(q) destroys an ampmodem object, freeing all internally-allocated memory.

ampmodem reset(q) resets the state of the ampmodem object.

ampmodem print(q) prints the internal state of the ampmodem object.

19.2 Linear digital modulation schemes 177

Table 9: Linear Modulation Schemes Available in liquid

scheme bits/symbol description

LIQUID MODEM UNKNOWN - unknown/unsupported scheme
LIQUID MODEM PSK{2,4,8,16,32,64,128,256} 1—8 phase-shift keying
LIQUID MODEM DPSK{2,4,8,16,32,64,128,256} 1—8 differential phase-shift keying
LIQUID MODEM ASK{2,4,8,16,32,64,128,256} 1—8 amplitude-shift keying
LIQUID MODEM QAM{4,8,16,32,64,128,256} 2—8 quadrature amplitude-shift keying
LIQUID MODEM APSK{4,8,16,32,64,128,256} 2—8 amplitude/phase-shift keying

LIQUID MODEM BPSK 1 binary phase-shift keying
LIQUID MODEM QPSK 2 quaternary phase-shift keying
LIQUID MODEM OOK 1 on/off keying
LIQUID MODEM SQAM32 5 “square” 32-QAM
LIQUID MODEM SQAM128 7 “square” 128-QAM
LIQUID MODEM V29 4 V.29 star modem
LIQUID MODEM ARB16OPT 4 optimal 16-QAM
LIQUID MODEM ARB32OPT 5 optimal 32-QAM
LIQUID MODEM ARB64OPT 6 optimal 64-QAM
LIQUID MODEM ARB128OPT 7 optimal 128-QAM
LIQUID MODEM ARB256OPT 8 optimal 256-QAM
LIQUID MODEM ARB64VT 6 Virginia Tech logo

LIQUID MODEM ARB 1—8 arbitrary signal constellation

ampmodem modulate(q,x,*y) modulates the input sample x storing the output to y.

ampmodem demodulate(q,y,*x) demodulates the input sample y storing the output to x.

An example of the ampmodem can be found in Figure 42

19.2 Linear digital modulation schemes

The modem object realizes the linear digital modulation library in which the information from a
symbol is encoded into the amplitude and phase of a sample. The modem structure implements a
variety of common modulation schemes, including (differential) phase-shift keying, and (quadrature)
amplitude-shift keying. The input/output relationship for modulation/demodulation for the modem

object is strictly one-to-one and is independent of any pulse shaping, or interpolation.

In general, linear modems demodulate by finding the closest of M symbols in the set SM =
{s0, s1, . . . , sM−1} to the received symbol r, viz

arg min
sk∈SM

{
‖r − sk‖

}
(109)

For arbitrary modulation schemes a linear search over all symbols in SM is required which has a
complexity of O(M2), however one may take advantage of symmetries in certain constellations to
reduce this.

178 19 MODEM

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200

in
p

u
t/

o
u

tp
u

t
s
ig

n
a

l

Sample Index

input
demodulated

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200

m
o

d
u
la

te
d

 s
ig

n
a

l

Sample Index

real
imag

(a) Time Series

-100

-80

-60

-40

-20

 0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n
s
it
y
 [

d
B

]

Normalized Frequency

(b) Power Spectral Density

Figure 42: ampmodem demonstration modulating an audio signal using double side-band, non-
suppressed carrier AM with a modulation index of k = 0.1 and a relative carrier frequency fc/Fs =
0.1.

19.2 Linear digital modulation schemes 179

19.2.1 Interface

modem create(scheme) creates a linear modulator/demodulator modem object with one of the
schemes defined in Table 9.

modem recreate(q,scheme) recreates a linear modulator/demodulator modem object q with one
of the schemes defined in Table 9.

modem create arbitrary(*table,M) creates a generic arbitrary modem (LIQUID MODEM ARB) with
the M -point constellation map defined by the float complex array table. The resulting
constellation is normalized such that it is centered at zero and has unity energy. Note that
M must be equal to 2m where m is an integer greater than zero.

modem destroy(q) destroys a modem object, freeing all internally-allocated memory.

modem print(q) prints the internal state of the object.

modem reset(q) resets the internal state of the object. This method is really only relevant to
LIQUID MODEM DPSK (differential phase-shift keying) which retains the phase of the previous
symbol in memory. All other modulation schemes are memoryless.

modem gen rand sym(q) generates a random integer symbol in {0,M − 1}.

modem get bps(q) returns the modem’s modulation depth (bits/symbol).

modem modulate(q,symbol,*x) modulates the integer symbol storing the result in the output
value of x. The input symbol value must be less than the constellation size M .

modem demodulate(q,x,*symbol) finds the closest integer symbol which matches the input sample
x. The exact method by which liquid performs this computation is dependent upon the
modulation scheme. For example, while LIQUID MODEM QAM4, and LIQUID MODEM PSK4 are
effectively equivalent (four points on the unit circle) they are demodulated differently.

modem demodulate soft(q,x,*symbol,*softbits) demodulates as with modem demodulate() (see
above) but also populates the m-element array of unsigned char as an approximate log-
likelihood ratio of the soft-decision demodulated bits (see § 19.2.10).

modem get demodulator sample(q,*xhat) returns the estimated transmitted symbol, x̂, after de-
modulation.

modem get demodulator phase error(q) returns an angle proportional to the phase error after
demodulation. This value can be used in a phase-locked loop (see §20.2) to correct for carrier
phase recovery.

modem get demodulator evm(q) returns a value equal to the error vector magnitude after demod-
ulation. The error vector is the difference between the received symbol and the estimated
transmitted symbol, e = r − ŝ. The magnitude of the error vector is an indication to the
signal-to-noise/distortion ratio at receiver.

180 19 MODEM

While the same modem structure may be used for both modulation and demodulation for most
schemes, it is important to use separate objects for differential-mode modems (e.g. LIQUID MODEM DPSK)
as the internal state will change after each symbol. It is usually good practice to keep separate
instances of modulators and demodulators. This holds true for most any encoder/decoder pair in
liquid. An example of the modem interface is listed below.

1 // file: doc/listings/modem.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // create mod/demod objects

6 modulation_scheme ms = LIQUID_MODEM_QPSK;

7

8 // create the modem objects

9 modem mod = modem_create(ms); // modulator

10 modem demod = modem_create(ms); // demodulator

11 modem_print(mod);

12

13 unsigned int sym_in; // input symbol

14 float complex x; // modulated sample

15 unsigned int sym_out; // demodulated symbol

16

17 // ...repeat as necessary...

18 {

19 // modulate symbol

20 modem_modulate(mod, sym_in, &x);

21

22 // demodulate symbol

23 modem_demodulate(demod, x, &sym_out);

24 }

25

26 // destroy modem objects

27 modem_destroy(mod);

28 modem_destroy(demod);

29 }

19.2.2 Gray coding

In order to reduce the number of bit errors in a digital modem, all symbols are automatically
Gray encoded such that adjacent symbols in a constellation differ by only one bit. For example,
the binary-coded decimal (BCD) value of 183 is 10110111. It has adjacent symbol 184 (10111000)
which differs by 4 bits. Assume the transmitter sends 183 without encoding. If noise at the receiver
were to cause it to demodulate the nearby symbol 184, the result would be 4 bit errors. Gray
encoding is computed to the binary-coded decimal symbol by applying an exclusive OR bitmask of
itself shifted to the right by a single bit.

10110111 bcd_in (183) 10111000 bcd_in (184)

.1011011 bcd_in >> 1 .1011100 bcd_in >> 1

xor : -------- --------

11101100 gray_out (236) 11100100 gray_out (228)

19.2 Linear digital modulation schemes 181

Notice that the two encoded symbols 236 (11101100) and 228 (11100100) differ by only one bit.
Now if noise caused the receiver were to demodulate a symbol error, it would result in only a single
bit error instead of 4 without Gray coding.

Reversing the process (decoding) is similar to encoding but slightly more involved. Gray decod-
ing is computed on an encoded input symbol by adding to it (modulo 2) as many shifted versions
of itself as it has bits. In our previous example the receiver needs to map the received encoded
symbol back to the original symbol before encoding:

11101100 gray_in (236) 11100100 gray_in (228)

.1110110 gray_in >> 1 .1110010 gray_in >> 1

..111011 gray_in >> 2 ..111001 gray_in >> 2

...11101 gray_in >> 3 ...11100 gray_in >> 3

....1110 gray_in >> 41110 gray_in >> 4

.....111 gray_in >> 5111 gray_in >> 5

......11 gray_in >> 611 gray_in >> 6

.......1 gray_in >> 71 gray_in >> 7

xor : -------- --------

10110111 gray_out (183) 10111000 gray_out (184)

There are a few interesting characteristics of Gray encoding:

• the first bit never changes in encoding/decoding

• there is a unique mapping between input and output symbols

It is also interesting to note that in linear modems (e.g. PSK), the decoder is actually applied to
the symbol at the transmitter while the encoder is applied to the received symbol at the receiver.
In liquid, Gray encoding and decoding are computed with the gray encode() gray decode()

methods, respectively.

19.2.3 LIQUID MODEM PSK (phase-shift keying)

With phase-shift keying the information is stored in the absolute phase of the modulated signal.
This means that each of M = 2m symbols in the constellation are equally spaced around the unit
circle. Figure 43 depicts the constellation of PSK up to M = 16 with the bits gray encoded. While
liquid supports up to M = 256, values greater than M = 32 are typically avoided due to error rates
for practical signal-to-noise ratios. For an M -symbol constellation, the kth symbol is

sk = ej2πk/M (110)

where k ∈ {0, 1, . . . ,M − 1}. Specific schemes include BPSK (M = 2),

sk = ejπk =

{
+1 k = 0

−1 k = 1
(111)

and QPSK (M = 4)

sk = ej(πk/4+π
4) (112)

Demodulation is performed independent of the signal amplitude for coherent PSK.

182 19 MODEM

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Q

I

01

(a) 2-PSK (generic BPSK)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Q

I

00

01

10

11

(b) 4-PSK (generic QPSK)

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Q

I

000

001010

011

100

101

110

111

(c) 8-PSK

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Q

I

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

(d) 16-PSK

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Q

I

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

(e) 32-PSK

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Q

I

0

1

2

3

4

5

6

7

8 9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

2425
26

27

28

29

30
31

32

33

34

35

36

37

38

39

40 41
42

43

44

45

46
47

48

49

50

51

52

53

54

55

5657

58
59

60

61

62

63

(f) 64-PSK

Figure 43: Phase-shift keying (PSK) modem constellation map. Note that BPSK and QPSK
are customized implementations of 2-PSK and 4-PSK. While only PSK up to M = 64 are shown,
liquid supports up to 256-PSK.

19.2 Linear digital modulation schemes 183

19.2.4 LIQUID MODEM DPSK (differential phase-shift keying)

Differential PSK (DPSK) encodes information in the phase change of the carrier. Like regular
PSK demodulation is performed independent of the signal amplitude; however because the data
are encoded using phase transitions rather than absolute phase, the receiver does not have to know
the absolute phase of the transmitter. This allows the receiver to demodulate incoherently, but at
a quality degradation of 3dB. As such the nth transmitted symbol k(n) depends on the previous
symbol, viz

sk(n) = exp

j2π
(
k(n)− k(n− 1)

)
M

 (113)

19.2.5 LIQUID MODEM APSK (amplitude/phase-shift keying

Amplitude/phase-shift keying (APSK) is a specific form of quadrature amplitude modulation where
constellation points lie on concentric circles. The constellation points are further apart than those
of PSK/DPSK, resulting in an improved error performance. Furthermore the phase recovery for
APSK is improved over regular QAM as the constellation points are less sensitive to phase noise.
This improvement comes at the cost of an increased computational complexity at the receiver.
Demodulation follows as a two-step process: first, the amplitude of the received signal is evaluated
to determine in which level (“ring”) the transmitted symbol lies. Once the level is determined,
the appropriate symbol is chosen based on its phase, similar to PSK demodulation. Demodulation
of APSK consumes slightly more clock cycles than the PSK and QAM demodulators. Figure 44
depicts the available APSK signal constellations for M up to 128. The constellation points and bit
mappings have been optimized to minimize the bit error rate in 10 dB SNR.

19.2.6 LIQUID MODEM ASK (amplitude-shift keying)

Amplitude-shift keying (ASK) is a simple form of amplitude modulation by which the information
is encoded entirely in the in-phase component of the baseband signal. The encoded symbol is
simply

sk = α
(
2k −M − 1

)
(114)

where α is a scaling factor to ensure E{s2
k} = 1,

α =

1 M = 2

1/
√

5 M = 4

1/
√

21 M = 8

1/
√

85 M = 16

1/
√

341 M = 32√
3/M M > 32

(115)

Figure 45 depicts the ASK constellation map for M up to 16. Due to the poor error rate perfor-
mance of ASK values of M greater than 16 are not recommended.

184 19 MODEM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

00

01

1011

(a) 4-APSK (1,3)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

000

001

010

011

100

101

110

111

(b) 8-PSK (1,7)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

(c) 16-APSK (4,12)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

(d) 32-APSK (4,12,16)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

(e) 64-APSK (4,14,20,26)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

9899

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

(f) 128-APSK (8,18,24,36,42)

Figure 44: Amplitude/phase-shift keying (APSK) modem demonstrating constellation points
lying on concentric circles. Not shown is 256-APSK (6,18,32,36,46,54,64).

19.2 Linear digital modulation schemes 185

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Q

I

0 1

(a) 2-ASK

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

00 01 1011

(b) 4-ASK

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

000 001 010011 100101110 111

(c) 8-ASK

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Q

I

0 1 23 456 7 8910 1112 13 1415

(d) 16-ASK

Figure 45: Pulse-amplitude modulation (ASK) modem

186 19 MODEM

19.2.7 LIQUID MODEM QAM (quadrature amplitude modulation)

Also known as quadrature amplitude-shift keying, QAM modems encode data using both the in-
phase and quadrature components of a signal amplitude. In fact, the symbol is split into indepen-
dent in-phase and quadrature symbols which are encoded separately as LIQUID MODEM ASK symbols.
Gray encoding is applied to both the I and Q symbols separately to help ensure minimal bit changes
between adjacent samples across both in-phase and quadrature-phase dimensions. This is made
evident in Figure 46(d) where one can see that the first three bits of the symbol encode the in-phase
component of the sample, and the last three bits encode the quadrature component of the sample.
We may formally describe the encoded sample is

sk = α
{

(2ki −Mi − 1) + j(2kq −Mq − 1)
}

(116)

where ki is the in-phase symbol, kq is the quadrature symbol, Mi = 2mi and Mq = 2mq , are the
number of respective in-phase and quadrature symbols, mi = dlog2(M)e and mq = blog2(M)c
are the number of respective in-phase and quadrature bits, and α is a scaling factor to ensure
E{s2

k} = 1,

α =

1/
√

2 M = 4

1/
√

6 M = 8

1/
√

10 M = 16

1/
√

26 M = 32

1/
√

42 M = 64

1/
√

106 M = 128

1/
√

170 M = 256

1/
√

426 M = 512

1/
√

682 M = 1024

1/
√

1706 M = 2048

1/
√

2730 M = 4096√
2/M else

(117)

Figure 46 depicts the arbitrary rectangular QAM modem constellation maps for M up to 256.
Notice that all the symbol points are gray encoded to minimize bit errors between adjacent symbols.

19.2.8 LIQUID MODEM ARB (arbitrary modem)

liquid also allows the user to create their own modulation schemes by designating the full signal
constellation. The penalty for defining a constellation as an arbitrary set of points is that it cannot
be decoded systematically. All of the previous modulation schemes have the benefit of being very
fast to decode, and do not necessitate searching over the entire constellation space to find the
nearest symbol. An example interface for generating a pair of arbitrary modems is listed below.

1 // file: doc/listings/modem_arb.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

19.2 Linear digital modulation schemes 187

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

000

001

010

011

100

101

110

111

(a) 8-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

(b) 16-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

(c) 32-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

(d) 64-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

(e) 128-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

(f) 256-QAM

Figure 46: Rectangular quaternary-amplitude modulation (QAM) modem

188 19 MODEM

5 // set modulation depth (bits/symbol)

6 unsigned int bps=4;

7 float complex constellation[1<<bps];

8

9 // ... (initialize constellation) ...

10

11 // create the arbitrary modem objects

12 modem mod = modem_create_arbitrary(constellation, 1<<bps);

13 modem demod = modem_create_arbitrary(constellation, 1<<bps);

14

15 // ... (modulate and demodulate as before) ...

16

17 // destroy modem objects

18 modem_destroy(mod);

19 modem_destroy(demod);

20 }

Several pre-defined arbitrary signal constellations are available, including optimal QAM constella-
tions, and some other fun (but perhaps not so useful) modulation schemes. Figure 47 shows the
constellation maps for the optimal QAM schemes. Notice that the constellations approximate a
circle with each point falling on the lattice of equilateral triangles. Furthermore, adjacent con-
stellation points differ by typically only a single bit to reduce the resulting bit error rate at the
output of the demodulator. These constellations marginally out-perform regular square QAM (see
Figures 53 and 55) at the expense of a significantly increased computational complexity.

Figure 48 depicts several available arbitrary constellation maps; however the user can cre-
ate any arbitrary constellation map so long as no two points overlap (see modem arb init() and
modem arb init file() in §19.2.1).

19.2.9 Performance

As discussed in §13.8, the performance of an error-correction scheme is typically measured in the bit
error rate (BER)—the average error probability for a bit to be in error in the presence of additive
white Gauss noise (AWGN).21 The bit error rate (BER) performance of the different available
modulation schemes can be seen in Figures 49—56, relative to the ratio of energy per bit to noise
power (Eb/N0). The raw data can be found in the doc/data/modem-ber/ subdirectory.

19.2.10 Soft Demodulation

Unlike hard demodulation which seeks the most likely transmitted symbol for a given received
sample, the goal of soft demodulation is to derive a probability metric for each bit for the received
sample. When using the output of the demodulator in conjunction with forward error-correction
coding, the soft bit information can improve the error detection and correction capabilities of most
decoders, usually by about 1.5 dB. This soft bit information provides a clue to the decoder as to
the confidence that each bit was received correctly. For turbo-product codes [4] and low-density
parity check (LDPC) codes [15], this soft bit information is nearly a requirement.

Before we continue, let us define some nomenclature:

21assuming the modulated symbols are uncorrelated and identically distributed.

19.2 Linear digital modulation schemes 189

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

(a) optimal 16-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

(b) optimal 32-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

(c) optimal 64-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

3435

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

8687

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126127

(d) optimal 128-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

(e) optimal 256-QAM

Figure 47: Optimal M -QAM constellation maps.

190 19 MODEM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

00000 00001

00010

00011

00100 00101

00110

00111

01000 01001

01010

01011

01100 01101

01110

01111

1000010001

10010

10011

1010010101

10110

10111

1100011001

11010

11011

1110011101

11110

11111

(a) “square” 32-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0 1

2 3

45

67

89

1011

12 13

14 15

16 17

18 19

2021

2223

24 25

26 27

28 29

30 31

32 33

34 35

3637

3839

4041

4243

44 45

46 47

48 49

50 51

5253

5455

56 57

58 59

60 61

62 63

6465

6667

68 69

70 71

72 73

74 75

7677

7879

8081

8283

84 85

86 87

8889

9091

9293

9495

9697

9899

100 101

102 103

104 105

106 107

108109

110111

112113

114115

116 117

118 119

120121

122123

124125

126127

(b) “square” 128-QAM

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Q

I

0000

0001

0010

0011

0100

01010110

0111

1000

1001

1010

1011

1100

11011110

1111

(c) V.29

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Q

I

0 1 23

4

5

6

7

89

10

11

12

13

14

15
16 17 1819

20 21

22

23

24 25 2627 282930 31

32

33

34

35

36

37

38

39

4041

42

43

44

45

46

47

48

49

50

51

52 53

54

55

56 57

58

59

60

61

62

63

(d) 64-VT

Figure 48: Arbitrary constellation (ARB) modem

19.2 Linear digital modulation schemes 191

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30

B
E

R

Eb/N0 [dB]

BPSK/2-ASK
DPSK-2

OOK

BER performance, P̂ = 10−5

schemes Es/N0 Eb/N0

BPSK, 2-ASK 9.59 9.59
DBPSK 10.46 10.46
OOK 12.61 12.61

Figure 49: Bit error rates vs. Eb/N0 for M = 2.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30

B
E

R

Eb/N0 [dB]

QPSK/4-QAM
4-APSK
4-DPSK

4-ASK

BER performance, P̂ = 10−5

schemes Es/N0 Eb/N0

QPSK, 4-QAM 12.59 9.59
4-APSK 14.76 11.75
DQPSK 14.93 11.92
4-ASK 16.59 13.58

Figure 50: Bit error rates vs. Eb/N0 for M = 4.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30

B
E

R

Eb/N0 [dB]

8-APSK
8-QAM
8-PSK

8-DPSK
8-ASK BER performance, P̂ = 10−5

schemes Es/N0 Eb/N0

8-APSK 16.12 11.35
8-QAM 17.28 12.51
8-PSK 17.84 13.07
8-DPSK 20.62 15.85
8-ASK 22.61 17.84

Figure 51: Bit error rates vs. Eb/N0 for M = 8.

192 19 MODEM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30

B
E

R

Eb/N0 [dB]

16-QAM (opt)
16-QAM

16-APSK
V.29

16-PSK
16-DPSK

16-ASK

BER performance, P̂ = 10−5

schemes Es/N0 Eb/N0

ARB-16-OPT 19.15 13.13
16-QAM 19.57 13.55
16-APSK 19.92 13.90
V.29 20.48 14.45
16-PSK 23.43 17.41
16-DPSK 26.43 20.41
16-ASK 28.54 22.52

Figure 52: Bit error rates vs. Eb/N0 for M = 16.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30

B
E

R

Eb/N0 [dB]

32-QAM (opt)
32-SQAM
32-APSK
32-QAM
32-PSK

32-DPSK

BER performance, P̂ = 10−5

schemes Es/N0 Eb/N0

ARB-32-OPT 22.11 15.12
32-SQAM 22.56 15.57
32-APSK 23.43 16.44
32-QAM 23.59 16.60
32-PSK 29.38 22.38
32-DPSK 32.38 25.39

Figure 53: Bit error rates vs. Eb/N0 for M = 32.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30

B
E

R

Eb/N0 [dB]

64-QAM (opt)
64-QAM

64-APSK
64-VT

64-PSK
64-DPSK

BER performance, P̂ = 10−5

schemes Es/N0 Eb/N0

ARB-64-OPT 25.22 17.44
64-QAM 25.50 17.71
64-APSK 27.06 19.28
ARB-64-VT 31.67 23.89
64-PSK 35.32 27.38
64-DPSK 38.28 30.50

Figure 54: Bit error rates vs. Eb/N0 for M = 64.

19.2 Linear digital modulation schemes 193

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30

B
E

R

Eb/N0 [dB]

128-QAM (opt)
128-SQAM

128-QAM
128-APSK

BER performance, P̂ = 10−5

schemes Es/N0 Eb/N0

ARB-128-OPT 28.19 19.74
128-SQAM 28.42 19.97
128-QAM 29.60 21.15
128-APSK 30.55 22.10

Figure 55: Bit error rates vs. Eb/N0 for M = 128.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30

B
E

R

Eb/N0 [dB]

256-QAM (opt)
256-QAM

256-APSK

BER performance, P̂ = 10−5

schemes Es/N0 Eb/N0

ARB-256-OPT 31.09 22.06
256-QAM 31.56 22.53
256-APSK 33.10 24.06

Figure 56: Bit error rates vs. Eb/N0 for M = 256.

194 19 MODEM

• M = 2m are the number of points in the constellation (constellation size).

• m = log2(M) are the number of bits per symbol in the constellation (modulation depth).

• sk is the symbol at index k on the complex plane; k ∈ {0, 1, 2, . . . ,M − 1}.

• {b0, b1, . . . , bm−1} is the encoded bit string of sk and is simply the value of k in binary-coded
decimal.

• bj is the bit at index j; bj ∈ {0, 1} and j ∈ {0, 1, . . . ,m− 1}.

• SM = {s0, s1, . . . , sM−1} is the set of all symbols in the constellation where 1/M
∑

k ‖sk‖22 = 1.

• Sbj=t is the subset of SM where the bit at index j is equal to t ∈ {0, 1}.
For example, let the modulation scheme be the generic 4-PSK with the constellation map defined
in Figure 43(b) which has m = 2, M = 4, and SM = {s0 = 1, s1 = j, s2 = −j, s3 = −1}. Subsets:

• Sb0=0 = {s0 = 1, s2 = −j} (right-most bit is 0)

• Sb0=1 = {s1 = j, s3 = −1} (right-most bit is 1)

• Sb1=0 = {s0 = 1, s1 = j} (left-most bit is 0)

• Sb1=1 = {s2 = −j, s3 = −1} (left-most bit is 1)

A few key points:

• Sbj=0 ∩ Sbj=1 = ∅, ∀j .

• Sbj=0 ∪ Sbj=1 = SM , ∀j .
Let us represent the received signal at a sampling instant n as

r(n) = s(n) + w(n) (118)

where s is the transmitted symbol and w is a zero-mean complex Gauss random variable with
a variance σ2

n = E{ww∗}. Let the transmitted symbols be i.i.d. and drawn from a M -point
constellation, each with m bits of information such that the symbols belong to a set of constellation
points sk ∈ SM and E{sks∗k} = 1. Assuming perfect channel knowledge, timing, and carrier offset
recovery, the log-likelihood ratio (LLR) of each bit bj is shown to be [20, Eq. (8)] the ratio of the
two conditional a posteriori probabilities of each bit having been transmitted, viz.

Λ(bj) = ln
P (bj = 1|observation)

P (bj = 0|observation)
(119)

Assuming that the channel is memoryless the “observation” is simply the received sample r in (118)
and does not depend on previous symbols; therefore P (bj = t|observation) = P (bj = t|r(n)) and
t ∈ {0, 1}. Furthermore, by assuming that the transmitted symbols are equally probable and that
the noise follows a Gauss distribution [37] the LLR reduces to

Λ(bj) = ln

(∑
s+∈Sbj=1

exp
{
‖r − s+‖22/2σ2

n

})
− ln

(∑
s−∈Sbj=0

exp
{
‖r − s−‖22/2σ2

n

})
(120)

19.2 Linear digital modulation schemes 195

As shown in [37] a sub-optimal simplified LLR expression can be obtained by replacing the summa-
tions in (120) with the single largest component of each: ln

∑
j e

zj ≈ maxj ln(ezj) = maxj zj . This
approximation provides a tight bound as long as the sum is dominated by its largest component.
The approximate LLR becomes

Λ̃(bj) =
1

2σ2
n

{
min

s+∈Sbj=0

‖r − s+‖22 − min
s−∈Sbj=1

‖r − s−‖22
}

(121)

Conveniently, both the exponential and logarithm operations disappear; furthermore, the noise
variance becomes a scaling factor and is only used to influence the reliability of the obtained LLR.

Figure 57 depicts the soft bit demodulation algorithm for a received 16-QAM signal point,
corrupted by noise. The received sample is r = −0.65− j0.47 which results in a hard demodulation
of 0001. The subfigures depict each of the four bits in the symbol {b0, b1, b2, b3} for which the soft
bit output is given, and show the nearest symbol for which a 0 and a 1 at that particular bit index
occurs. For example, Figure 57(c) shows that the nearest symbol containing a 0 at bit index 2 is
s1 =0001 (the hard decision demodulation) at (−3− j)/

√
10 while the nearest symbol containing

a 1 at bit index 2 is s3 =0011 at (−3 + j)/
√

10. Plugging s− = s1 and s+ = s3 into (121) and
evaluating for σn = 0.2 gives Λ̃(b2) = −7.43. Because this number is largely negative, it is very
likely that the transmitted bit b2 was 0. This can be verified by Figure 57(c) which shows that the
distance from r to s− is much shorter than that of s+.

Conversely, Figure 57(b) shows that b1 cannot be demodulated with such certainty; the distances
from r to each of s+ and s− are about the same. This is reflected in the relatively small LLR value
of Λ̃(b1) = −0.28 which suggests a high uncertainty in the demodulation of b1.

One major drawback of computing (121) is that finding the maximum requires searching over
all constellation points to find the one which minimizes ‖r − sk‖ (where sk ∈ Sbj=t) is particularly
time-consuming. To circumvent this, liquid only searches over a subset Sk ⊂ SM nearest to the
hard-demodulated symbol (Sk will typically only have about four values). This can be done quickly
because the hard-demodulated symbol can be found systematically for most modulation schemes
(e.g. for LIQUID MODEM QAM only O(log2M) comparisons are needed to make a hard decision). If
no symbols are found within Sk for a given bit value such that Sk∩Sbj=t = ∅ then the magnitude of

Λ(bj) is sufficiently large and contains little soft bit information; that is Λ̃(bj)� 0 when Sk∩Sbj=0 =

∅ and Λ̃(bj)� 0 when Sk∩Sbj=1 = ∅. It is guaranteed that
(
Sk ∩ Sbj=0

)
∪
(
Sk ∩ Sbj=1

)
6= ∅ because

sk must be in either Sbj=0 or Sbj=1.

liquid performs soft demodulation with the modem demodulate soft(q,x,*symbol,*soft bits)

method. This is the same as the regular demodulate method, but also returns the “soft” bits in
addition to an estimate of the original symbol. Soft bit information is stored in liquid as type
unsigned char with a value of 255 representing a very likely 1, and a value of 0 representing a
very likely 0. The erasure condition is 127.

soft bit value: [0 1 2 3 ... 64 65 ... 127 ... 192 193 ... 253 254 255]

interpretation: very likely ’0’ likely ’0’ erasure likely ’1’ very likely ’1’

The fec and packetizer objects can make use of this soft information to improve the probability
of decoding a packet (see Sections 13.7.1 and 16.2 for details).

196 19 MODEM

 0

 0

Q
u

a
d

ra
tu

re

In Phase

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

 0

 0

 0

 0

 1

 1

 1

 1

 0

 0

 0

 0

 1

 1

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

(a) Λ̃(b0) = −10.55

 0

 0

Q
u

a
d

ra
tu

re

In Phase

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

 0

 0

 0

 0

 1

 1

 1

 1

 0

 0

 0

 0

 1

 1

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

(b) Λ̃(b1) = −0.28

 0

 0

Q
u

a
d

ra
tu

re

In Phase

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

 0

 0

 0

 0

 1

 1

 1

 1

 0

 0

 0

 0

 1

 1

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

(c) Λ̃(b2) = −7.43

 0

 0

Q
u

a
d

ra
tu

re

In Phase

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

 0

 0

 0

 0

 1

 1

 1

 1

 0

 0

 0

 0

 1

 1

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 0

 1

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

 0

 1

(d) Λ̃(b3) = 2.57

Figure 57: Soft demodulation example of a 16-QAM sample. Each plot depicts the soft demod-
ulation of each of the 4 bits where the × denotes the received sample and the lines connect it to
the nearest symbol with each of a 0 and 1 bit. The noise standard deviation is σn = 0.2.

19.3 Continuous phase digital modulation schemes 197

19.2.11 Error Vector Magnitude

The error vector magnitude (EVM) of a demodulated symbol is simply the average magnitude of
the error vector between the received sample before demodulation and the expected transmitted
symbol, viz.

EVM , |s− ŝ| (122)

EVM is returned by many of the framing objects (see §16) because it gives a good indication of
signal distortion as a result of noise, inter-symbol interference, etc. If the only channel impairment
is noise (e.g. perfect symbol timing) then the SNR can be estimated as

γ̂ = E
{
|s− ŝ|2

}−1/2

19.3 Continuous phase digital modulation schemes

Unlike the linear modems of §19.2, continuous-phase modems do not have a one-to-one input-to-
output relationship. That is, the filtering operation is part of the modulation itself.

19.3.1 gmskmod, gmskdem (Gauss minimum-shift keying)

The two objects gmksmod and gmskdem implement the Gauss minimum-shift keying (GMSK) modem
in liquid. Notice that unlike the linear modem objects, the GMSK modulator and demodulator are
split into separate objects.

gmskmod create(k,m,BT) creates and returns an gmskmod object with k samples/symbol, a delay
of m symbols, and a bandwidth-time product (excess bandwidth factor) BT .

gmskmod destroy(q) destroys an gmskmod object, freeing all internally-allocated memory.

gmskmod reset(q) clears the internal state of the gmskmod object.

gmskmod print(q) prints the internal state of the gmskmod object.

gmskmod modulate(q,s,*y) modulates a symbol s ∈ {0, 1}, storing the output in k-element array
y.

Demodulation is performed by differentiating the instantaneous received frequency and running
the resulting time-varying phase through a matched filter. By design, the GMSK transmit filter
imparts inter-symbol interference (by nature of the pulse shape). To mitigate symbol errors, the
receive filter is initially designed to remove as much ISI as possible (see §15.5.4 for a discussion
on GMSK transmit and receive filter designs in liquid). Internally, the GMSK demodulator takes
care of timing recovery using an LMS equalizer (see §12.2). The GMSK demodulator has a similar
interface to the modulator:

gmskdem create(k,m,BT) creates and returns an gmskdem object with k samples/symbol, a delay
of m symbols, and a bandwidth-time product (excess bandwidth factor) BT .

gmskdem destroy(q) destroys an gmskdem object, freeing all internally-allocated memory.

198 19 MODEM

gmskdem reset(q) clears the internal state of the gmskdem object.

gmskdem print(q) prints the internal state of the gmskdem object.

gmskdem demodulate(q,*y,*s) demodulates the k-element array y, storing the output symbol (0
or 1) in the de-referenced pointer s.

gmskdem set eq bw(q,w) sets the bandwidth (learning rate) of the internal LMS equalizer to w
where w ∈ [0, 0.5].

Listed below is an example to interfacing with the gmskmod and gmskdem modulator/demodu-
lator objects.

1 // file: doc/listings/gmskmodem.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // options

6 unsigned int k=4; // filter samples/symbol

7 unsigned int m=3; // filter delay (symbols)

8 float BT=0.3f; // bandwidth-time product

9

10 // create modulator/demodulator objects

11 gmskmod mod = gmskmod_create(k, m, BT);

12 gmskdem demod = gmskdem_create(k, m, BT);

13

14 unsigned int i;

15 unsigned int sym_in; // input data symbol

16 float complex x[k]; // modulated samples

17 unsigned int sym_out; // demodulated data symbol

18

19 {

20 // generate random symbol {0,1}

21 sym_in = rand() % 2;

22

23 // modulate

24 gmskmod_modulate(mod, sym_in, x);

25

26 // demodulate

27 gmskdem_demodulate(demod, x, &sym_out);

28 }

29

30 // destroy modem objects

31 gmskmod_destroy(mod);

32 gmskdem_destroy(demod);

33 }

199

20 nco (numerically-controlled oscillator)

This section describes the numerically-controlled oscillator (NCO) for carrier synchronization.

20.1 nco object

The nco object implements an oscillator with two options for internal phase precision: LIQUID NCO

and LIQUID VCO. The LIQUID NCO implements a numerically-controlled oscillator that uses a look-
up table to generate a complex sinusoid while the LIQUID VCO implements a “voltage-controlled”
oscillator that uses the sinf and cosf standard math functions to generate a complex sinusoid.

20.1.1 Description of operation

The nco object maintains its phase and frequency states internally. Various computations–such
as mixing–use the phase state for generating complex sinusoids. The phase θ of the nco object is
updated using the nco crcf step() method which increments θ by ∆θ, the frequency. Both the
phase and frequency of the nco object can be manipulated using the appropriate nco crcf set

and nco crcf adjust methods. Here is a minimal example demonstrating the interface to the nco

object:

1 // file: doc/listings/nco_pll.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // create nco objects

6 nco_crcf nco_tx = nco_crcf_create(LIQUID_VCO); // transmit NCO

7 nco_crcf nco_rx = nco_crcf_create(LIQUID_VCO); // receive NCO

8

9 // ... initialize objects ...

10

11 float complex * x;

12 unsigned int i;

13 // loop as necessary

14 {

15 // tx : generate complex sinusoid

16 nco_crcf_cexpf(nco_tx, &x[i]);

17

18 // compute phase error

19 float dphi = nco_crcf_get_phase(nco_tx) -

20 nco_crcf_get_phase(nco_rx);

21

22 // update pll

23 nco_crcf_pll_step(nco_rx, dphi);

24

25 // update nco objects

26 nco_crcf_step(nco_tx);

27 nco_crcf_step(nco_rx);

28 }

29

30 // destry nco object

200 20 NCO (NUMERICALLY-CONTROLLED OSCILLATOR)

31 nco_crcf_destroy(nco_tx);

32 nco_crcf_destroy(nco_rx);

33 }

20.1.2 Interface

Listed below is the full interface to the nco family of objects.

nco crcf create(type) creates an nco object of type LIQUID NCO or LIQUID VCO.

nco crcf destroy(q) destroys an nco object, freeing all internally-allocated memory.

nco crcf print(q) prints the internal state of the nco object to the standard output.

nco crcf reset(q) clears in internal state of an nco object.

nco crcf set frequency(q,f) sets the frequency f (equal to the phase step size ∆θ).

nco crcf adjust frequency(q,df) increments the frequency by ∆f .

nco crcf set phase(q,theta) sets the internal nco phase to θ.

nco crcf adjust phase(q,dtheta) increments the internal nco phase by ∆θ.

nco crcf step(q) increments the internal nco phase by its internal frequency, θ ← θ + ∆θ

nco crcf get phase(q) returns the internal phase of the nco object, −π ≤ θ < π.

nco crcf get frequency(q) returns the internal frequency (phase step size)

nco crcf sin(q) returns sin(θ)

nco crcf cos(q) returns cos(θ)

nco crcf sincos(q,*sine,*cosine) computes sin(θ) and cos(θ)

nco crcf cexpf(q,*y) computes y = ejθ

nco crcf mix up(q,x,*y) rotates an input sample x by ejθ, storing the result in the output sample
y.

nco crcf mix down(q,x,*y) rotates an input sample x by e−jθ, storing the result in the output
sample y.

nco crcf mix block up(q,*x,*y,n) rotates an n-element input array x by ejθk for k ∈ {0, 1, . . . , n−
1}, storing the result in the output vector y.

nco crcf mix block down(q,*x,*y,n) rotates an n-element input array x by e−jθk for k ∈ {0, 1, . . . , n−
1}, storing the result in the output vector y.

20.2 PLL (phase-locked loop) 201

+ F (s)

K
s

φ
∆φ

−

φ̂

Figure 58: PLL block diagram

20.2 PLL (phase-locked loop)

The phase-locked loop object provides a method for synchronizing oscillators on different plat-
forms. It uses a second-order integrating loop filter to adjust the frequency of its nco based on an
instantaneous phase error input. As its name implies, a PLL locks the phase of the nco object to
a reference signal. The PLL accepts a phase error and updates the frequency (phase step size) of
the nco to track to the phase of the reference. The reference signal can be another nco object, or
a signal whose carrier is modulated with data. The PLL consists of three components: the phase
detector, the loop filter, and the integrator. A block diagram of the PLL can be seen in Figure 58
in which the phase detector is represented by the summing node, the loop filter is F (s), and the
integrator has a transfer function G(s) = K/s. For a given loop filter F (s), the closed-loop transfer
function becomes

H(s) =
G(s)F (s)

1 +G(s)F (s)
=

KF (s)

s+KF (s)
(123)

where the loop gain K absorbs all the gains in the loop. There are several well-known options for
designing the loop filter F (s), which is, in general, a first-order low-pass filter. In particular we
are interested in getting the denominator of H(s) to the standard form s2 + 2ζωns+ ω2

n where ωn
is the natural frequency of the filter and ζ is the damping factor. This simplifies analysis of the
overall transfer function and allows the parameters of F (s) to ensure stability.

20.2.1 Active lag design

The active lag PLL [5] has a loop filter with a transfer function F (s) = (1 + τ2s)/(1 + τ1s) where τ1

and τ2 are parameters relating to the damping factor and natural frequency. This gives a closed-loop
transfer function

H(s) =
K
τ1

(1 + sτ2)

s2 + s1+Kτ2
τ1

+ K
τ1

(124)

Converting the denominator of (124) into standard form yields the following equations for τ1 and
τ2:

ωn =

√
K

τ1
ζ =

ωn
2

(
τ2 +

1

K

)
→ τ1 =

K

ω2
n

τ2 =
2ζ

ωn
− 1

K
(125)

202 20 NCO (NUMERICALLY-CONTROLLED OSCILLATOR)

The open-loop transfer function is therefore

H ′(s) = F (s)G(s) = K
1 + τ2s

s+ τ1s2
(126)

Taking the bilinear z-transform of H ′(s) gives the digital filter:

H ′(z) = H ′(s)
∣∣∣
s= 1

2
1−z−1

1+z−1

= 2K
(1 + τ2/2) + 2z−1 + (1− τ2/2)z−2

(1 + τ1/2)− τ1z−1 + (−1 + τ1/2)z−2
(127)

A simple 2nd-order active lag IIR filter can be designed using the following method:

void iirdes_pll_active_lag(float _w, // filter bandwidth

float _zeta, // damping factor

float _K, // loop gain (1,000 suggested)

float * _b, // output feed-forward coefficients [size: 3 x 1]

float * _a); // output feed-back coefficients [size: 3 x 1]

20.2.2 Active PI design

Similar to the active lag PLL design is the active “proportional plus integration” (PI) which has
a loop filter F (s) = (1 + τ2s)/(τ1s) where τ1 and τ2 are also parameters relating to the damping
factor and natural frequency, but are different from those in the active lag design. The above loop
filter yields a closed-loop transfer function

H(s) =
K
τ1

(1 + sτ2)

s2 + sKτ2τ1 + K
τ1+τ2

(128)

Converting the denominator of (128) into standard form yields the following equations for τ1 and
τ2:

ωn =

√
K

τ1
ζ =

ωnτ2

2
→ τ1 =

K

ω2
n

τ2 =
2ζ

ωn
(129)

The open-loop transfer function is therefore

H ′(s) = F (s)G(s) = K
1 + τ2s

τ1s2
(130)

Taking the bilinear z-transform of H ′(s) gives the digital filter

H ′(z) = H ′(s)
∣∣∣
s= 1

2
1−z−1

1+z−1

= 2K
(1 + τ2/2) + 2z−1 + (1− τ2/2)z−2

τ1/2− τ1z−1 + (τ1/2)z−2
(131)

A simple 2nd-order active PI IIR filter can be designed using the following method:

void iirdes_pll_active_PI(float _w, // filter bandwidth

float _zeta, // damping factor

float _K, // loop gain (1,000 suggested)

float * _b, // output feed-forward coefficients [size: 3 x 1]

float * _a); // output feed-back coefficients [size: 3 x 1]

20.2 PLL (phase-locked loop) 203

20.2.3 PLL Interface

The nco object has an internal PLL interface which only needs to be invoked before the nco crcf step()

method (see §20.1.2) with the appropriate phase error estimate. This will permit the nco object
to automatically track to a carrier offset for an incoming signal. The nco object has the following
PLL method extensions to enable a simplified phase-locked loop interface.

nco crcf pll set bandwidth(q,w) sets the bandwidth of the loop filter of the nco object’s inter-
nal PLL to ω.

nco crcf pll step(q,dphi) advances the nco object’s internal phase with a phase error ∆φ to
the loop filter. This method only changes the frequency of the nco object and does not update
the phase until nco crcf step() is invoked. This is useful if one wants to only run the PLL
periodically and ignore several samples. See the example code below for help.

Here is a minimal example demonstrating the interface to the nco object and the internal phase-
locked loop:

1 // file: doc/listings/nco_pll.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // create nco objects

6 nco_crcf nco_tx = nco_crcf_create(LIQUID_VCO); // transmit NCO

7 nco_crcf nco_rx = nco_crcf_create(LIQUID_VCO); // receive NCO

8

9 // ... initialize objects ...

10

11 float complex * x;

12 unsigned int i;

13 // loop as necessary

14 {

15 // tx : generate complex sinusoid

16 nco_crcf_cexpf(nco_tx, &x[i]);

17

18 // compute phase error

19 float dphi = nco_crcf_get_phase(nco_tx) -

20 nco_crcf_get_phase(nco_rx);

21

22 // update pll

23 nco_crcf_pll_step(nco_rx, dphi);

24

25 // update nco objects

26 nco_crcf_step(nco_tx);

27 nco_crcf_step(nco_rx);

28 }

29

30 // destry nco object

31 nco_crcf_destroy(nco_tx);

32 nco_crcf_destroy(nco_rx);

33 }

204 20 NCO (NUMERICALLY-CONTROLLED OSCILLATOR)

See also examples/nco pll example.c and examples/nco pll modem example.c located in the
main liquid project directory. An example of the PLL can be seen in Figure 59. Notice that during
the first 150 samples the NCO’s output signal is misaligned to the input; eventually, however, the
PLL acquires the phase of the input sinusoid and the phase error of the NCO’s output approaches
zero.

20.2 PLL (phase-locked loop) 205

-1

 0

 1

 0 50 100 150 200 250 300 350 400

re
a

l

Sample Index

input
nco

-1

 0

 1

 0 50 100 150 200 250 300 350 400

im
a
g

Sample Index

input
nco

(a) nco output

-3

-2

-1

 0

 1

 2

 3

 0 50 100 150 200 250 300 350 400

p
h

a
s
e

 e
rr

o
r

[r
a

d
ia

n
s
]

Sample Index

(b) phase error

Figure 59: nco phase-locked loop demonstration

206 21 OPTIM (OPTIMIZATION)

21 optim (optimization)

The optim module in liquid implements several non-linear optimization algorithms including a
gradient descent search, a quasi-Newton search (experimental: see §25.5) and an evolutionary
algorithm.

21.1 gradsearch (gradient search)

This module implements a gradient or “steepest-descent” search. Given a function f which operates
on a vector x = [x0, x1, . . . , xN−1]T of N parameters, the gradient search method seeks to find the
optimum x which minimizes f(x).

21.1.1 Theory

The gradient search is an iterative method and adjusts x proportional to the negative of the gradient
of f evaluated at the current location. The vector x is adjusted by

∆x[n+ 1] = −γ[n]∇f(x[n])

where γ[n] is the step size and ∇f(x[n]) is the gradient of f at x, at the nth iteration. The gradient
is a vector field which points to the greatest rate of increase, and is computed at x as

∇f(x) =

(
∂f

∂x0
,
∂f

∂x1
, . . . ,

∂f

∂xN−1

)
In most non-linear optimization problems, ∇f(x) is not known, and must be approximated for
each value of x[n] using the finite element method. The partial derivative of the kth component is
estimated by computing the slope of f when xk is increased by a small amount ∆ while holding
all other elements of x constant. This process is repeated for all elements in x to compute the
gradient vector. Mathematically, the kth component of the gradient is approximated by

∂f(x)

∂xk
≈ f(x0, . . . , xk + ∆, . . . , xN−1)− f(x)

∆

Once ∇f(x[n]) is known, ∆x[n+ 1] is computed and the optimizing vector is updated via

x[n+ 1] = x[n] + ∆x[n+ 1]

21.1.2 Momentum constant

When f(x) is flat (i.e. ∇f(x) ≈ 0), convergence will be slow. This effect can be mitigated by
permitting the update vector equation to retain a small portion of the previous step vector. The
updated vector at time n+ 1 is

x[n+ 1] = x[n] + ∆x[n+ 1] + α∆x[n]

where ∆x[0] = 0. The effective update at time n+ 1 is

x[n+ 1] =
n+1∑
k=0

αk∆x[n+ 1− k]

21.1 gradsearch (gradient search) 207

which is stable only for 0 ≤ α < 1. For flat regions, the gradient vector ∇f(x) is approximately
a constant ∆x, and x[n] therefore becomes a geometric series converging to ∆x/(1 − α). This
accelerates the algorithm across relatively flat regions of f . The momentum constant additionally
adds some stability for regions where the gradient method tends to oscillate, such as steep valleys
in f .

21.1.3 Step size adjustment

In liquid, the gradient is normalized to unity (orthonormal). That is ‖∇f(x[n])‖ = 1. Furthermore,
γ is slightly reduced each epoch by a multiplier µ

γ[n+ 1] = µγ[n]

This helps improve stability and convergence over regions where the algorithm might oscillate due
to steep values of f .

21.1.4 Interface

Here is a summary of the parameters used in the gradient search algorithm and their default values:

∆ : step size in computing the gradient (default 10−6)

γ : step size in updating x[n] (default 0.002)

α : momentum constant (default 0.1)

µ : iterative γ adjustment factor (default 0.99)

gradsearch create(*userdata,*v,n,utility,min/max,*props) creates a gradient search ob-
ject designed to optimize an n-point vector v. The user-defined utility function and userdata
structures define the search, as well as the min/max flag which can be either LIQUID OPTIM MINIMIZE

or LIQUID OPTIM MAXIMIZE. Finally, the search is parametrized by the props structure; if set
to NULL the defaults will be used. When run the gradsearch object will update the “optimal”
value in the input vector v specified during create().

gradsearch destroy(q) destroys a gradsearch object, freeing all internally-allocated memory.

gradsearch print(q) prints the internal state of the gradient search object.

gradsearch reset(q) resets the internal state of the gradient search object.

gradsearch step(q) steps through a single iteration of the gradient search. The result is stored
in the original input vector v specified during the create() method.

gradsearch execute(q,n,target utility) runs multiple iterations of the search algorithm, stop-
ping after either n iterations or if the target utility is met.

Here is an example of how the gradient search is used:

208 21 OPTIM (OPTIMIZATION)

1 // file: doc/listings/gradsearch.example.c

2 # include <liquid / liquid.h>

3

4 // user-defined utility callback function

5 float myutility(void * _userdata, float * _v, unsigned int _n)

6 {

7 float u = 0.0f;

8 unsigned int i;

9 for (i=0; i<_n; i++)

10 u += fabsf(_v[i]);

11 return u;

12 }

13

14 int main() {

15 unsigned int num_parameters = 8; // search dimensionality

16 unsigned int num_iterations = 100; // number of iterations to run

17 float target_utility = 0.01f; // target utility

18

19 float v[num_parameters]; // optimum vector

20

21 // ... intialize v ...

22

23 // create gradsearch object

24 gradsearch gs = gradsearch_create(NULL,

25 v,

26 num_parameters,

27 &myutility,

28 LIQUID_OPTIM_MINIMIZE,

29 NULL);

30

31 // execute batch search

32 gradsearch_execute(gs, num_iterations, target_utility);

33

34 // clean it up

35 gradsearch_destroy(gs);

36 }

Notice that the utility function is a callback that is completely defined by the user. Figure 60
depicts the performance of the gradient search for the Rosenbrock function, defined as f(x, y) =
(1− x)2 + 100(y− x2)2 for input parameters x and y. The Rosenbrock function has a minimum at
(x, y) = (1, 1); however the minimum lies in a deep valley which can be difficult to navigate. From
the figure it is apparent that finding the valley is trivial, but convergence to the minimum is slow.

21.2 gasearch genetic algorithm search

The gasearch object implements an evolutionary (genetic) algorithm search in liquid. The search
uses a binary string of traits called a chromosome (see §21.2.1, below) to represent a potential
solution. A population of chromosomes is generated and their appropriate fitnesses are calculated.
With each evolution of the population the best chromosomes are retained and the worst are dis-
carded; this process is known as selection. The population is restored by computing new potential

21.2 gasearch genetic algorithm search 209

-1.5
-1

-0.5
 0

 0.5
 1

 1.5

x
-0.5

 0

 0.5

 1

 1.5

y

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 0 500 1000 1500 2000

R
o

s
e

n
b

ro
c
k
 U

ti
lit

y

Iteration

Figure 60: gradsearch performance for 2-parameter Rosenbrock function f(x, y) = (1 − x)2 +
100(y − x2)2 with a starting point of (x0, y0) = (−0.2, 1.4). The minimum is located at (1, 1).

210 21 OPTIM (OPTIMIZATION)

solutions by splitting traits of the better chromosomes into a new member (crossover) as well as
randomly flipping some of the bits in each chromosome (mutation).

21.2.1 chromosome, solution representation

The chromosome object in liquid realizes a binary string of traits used in the gasearch object. A
chromosome has a fixed number of traits as well as a fixed number of bits to represent each trait;
however the number of bits representing each trait does not necessarily need to be the same for
the chromosome. That is to say a chromosome may have a number of traits, each with a different
number of bits representing them; however once a chromosome object is created, the number of bits
representing each trait is not allowed to be changed.

Because of the many ways a chromosome can represent information liquid provides a number
of methods for creating and initializing chromosomes.

chromosome create(*b,n) creates a chromosome with n traits. The number of bits per trait are
specified in the array b.

chromosome create basic(n,b) creates a chromosome with n traits and a constant b bits for each
trait.

chromosome create clone(p) clones a chromosome from another one, including its representation
of traits, the number of bits per trait, as well as the values of the traits themselves.

chromosome destroy(q) destroys a chromosome object, freeing all internally-allocated memory.

Furthermore, the value of all the chromosome’s traits may be set with the appropriate init()

method:

chromosome copy(q) copies an existing chromosomes’ internal traits; all other internal parameters
must be equal.

chromosome init(q,*v) initializes a chromosome’s discrete trait values to the input array of
unsigned int values v. The trait values are in the range [0, 2nk − 1] where n represents
the number of bits in the kth trait.

chromosome initf(q,*v) initializes a chromosome’s continuous trait values to the input array of
float values v. The trait values are in the range [0, 1] and are represented by floating-point
values. Because each trait has a discrete number of values (limited bit resolution), the value
of the trait is quantized to its nearest representation.

chromosome init random(q) initializes a chromosome’s trait values to a random number.

The values of specific traits can be retrieved using the value() methods. They are useful for
evaluating the fitness of the chromosome in the search algorithm’s callback function.

chromosome value(q,k) returns the value of the kth trait (integer representation).

chromosome valuef(q,k) returns the value of the kth trait (floating-point representation).

Finally the methods for use in the gasearch algorithm are described:

21.2 gasearch genetic algorithm search 211

chromosome mutate(q,k) flips the kth bit of the chromosome.

chromosome crossover(p1,p2,c,k) copies the first k bits of the first parent p1 and the remaining
bits of the second parent p2 to the child chromosome c2.

21.2.2 Interface

Listed below is a description for the gasearch object in liquid.

gasearch create(*utility,*userdata,parent,min/max) creates a gasearch object, initialized
on the specified parent chromosome. The user-defined utility function and userdata structures
define the search, as well as the min/max flag which can be either LIQUID OPTIM MINIMIZE or
LIQUID OPTIM MAXIMIZE.

gasearch destroy(q) destroys a gasearch object, freeing all internally-allocated memory.

gasearch print(q) prints the internal state of the gasearch object

gasearch set mutation rate(q,rate) sets the mutation rate

gasearch set population size(q,population,selection) sets both the population size as well
as the selection size of the evolutionary algorithm

gasearch run(q,n,target utility) runs multiple iterations of the search algorithm, stopping
after either n iterations or if the target utility is met.

gasearch evolve(q) steps through a single iteration of the search.

gasearch getopt(q,*chromosome,*u) produces the best chromosome over the coarse of the search
evolution, as well as its utility.

21.2.3 Example Code

An example of the gasearch interface is given below:

1 // file: doc/listings/gasearch.example.c

2 # include <liquid / liquid.h>

3

4 // user-defined utility callback function

5 float myutility(void * _userdata, chromosome _c)

6 {

7 // compute utility from chromosome

8 float u = 0.0f;

9 unsigned int i;

10 for (i=0; i<chromosome_get_num_traits(_c); i++)

11 u += chromosome_valuef(_c,i);

12 return u;

13 }

14

15 int main() {

16 unsigned int num_parameters = 8; // dimensionality of search (minimum 1)

212 21 OPTIM (OPTIMIZATION)

17 unsigned int num_iterations = 100; // number of iterations to run

18 float target_utility = 0.01f; // target utility

19

20 unsigned int bits_per_parameter = 16; // chromosome parameter resolution

21 unsigned int population_size = 100; // GA population size

22 float mutation_rate = 0.10f; // GA mutation rate

23

24 // create prototype chromosome

25 chromosome prototype = chromosome_create_basic(num_parameters, bits_per_parameter);

26

27 // create gasearch object

28 gasearch ga = gasearch_create_advanced(

29 &myutility,

30 NULL,

31 prototype,

32 LIQUID_OPTIM_MINIMIZE,

33 population_size,

34 mutation_rate);

35

36 // execute batch search

37 gasearch_run(ga, num_iterations, target_utility);

38

39 // execute search one iteration at a time

40 unsigned int i;

41 for (i=0; i<num_iterations; i++)

42 gasearch_evolve(ga);

43

44 // clean up objects

45 chromosome_destroy(prototype);

46 gasearch_destroy(ga);

47 }

Evolutionary algorithms are well-suited for discrete optimization problems, particularly where a
large number of parameters only hold a few values. The classic example is the knapsack problem
(constrained, non-linear) in which the selection of items with different weights and values must be
chosen to maximize the total value without exceeding a prescribed weight capacity. An example of
using the gasearch object in liquid to search over the solution space of the knapsack problem can
be found in the examples directory as examples/gasearch knapsack example.c.

213

22 random

The random module in liquid includes a comprehensive set of random number generators useful for
simulation of wireless communications channels, particularly for generating noise as well as fading
channels. This includes the uniform, normal, circular (complex) Gaussian, Rice-K, and Weibull
distributions.

22.1 Uniform

The uniform random variable generator in liquid simply generates a number evenly distributed
in [0, 1). Internally liquid uses the standard rand() method for generating random integers and
then divides by RAND MAX, the maximum number that can be generated. The probability density
function is defined as

fX(x) =

{
1 if 0 ≤ x < 1

0 else.
(132)

The uniform random number generator is the basis for generating most other distributions in liquid.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

x

histogram
true PDF

Uniform random number generator interface:

float randf();

float randf_pdf(float _x);

float randf_cdf(float _x);

22.2 Normal (Gaussian)

The normal (or Gauss) distribution has a probability density function defined as

fX(x;σ, η) =
1

σ
√

2π
e−(x−η)2/2σ2

(133)

liquid generates normal random variables using the Box-Muller method. If U1 and U2 are uniform
random variables with a distribution defined by (132), then X1 =

√
−2 ln(U1) sin (2πU2) and

X2 =
√
−2 ln(U1) cos (2πU2) are independent normal random variables with a mean of zero and a

unity standard deviation (X1, X2 ∼ N(0, 1)).

214 22 RANDOM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-4 -3 -2 -1 0 1 2 3 4

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

x

histogram
true PDF

Normal (Gauss) random number generator inter-
face:

float randnf();

float randnf_pdf(float _x,

float _eta,

float _sigma);

float randnf_cdf(float _x,

float _eta,

float _sigma);

22.3 Exponential

The exponential distribution has a probability density function defined as

fX(x;λ) = λe−λx (134)

liquid generates exponential random variables by inverting the cumulative distribution function, viz

FX(x;λ) = 1− e−λx (135)

Specifically if U is uniform random variable with a distribution defined by (132) then X = − lnU/λ
has an exponential distribution defined by (135).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

x

histogram
true PDF

Exponential random number generator interface:

float randexpf(float _lambda);

float randexpf_pdf(float _x, float _lambda);

float randexpf_cdf(float _x, float _lambda);

22.4 Weibull

The Weibull distribution has a probability density function defined by

fX(x;α, β, γ) =

α
β

(
x−γ
β

)α−1
exp
{
−
(
x−γ
β

)α}
x ≥ γ

0 else.
(136)

22.5 Gamma 215

where α is the shape parameter, β is the scale parameter, and γ is the threshold parameter. liquid
generates Weibull random variables by inverting the cumulative distribution function, viz

FX(x;α, β, γ) =

{
1− exp

{
−
(
x−γ
β

)α}
x ≥ γ

0 else.
(137)

Specifically if U is uniform random variable with a distribution defined by (132) then X = γ +

β [ln (1− U)]1/α has a Weibull distribution defined by (137).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3 3.5 4 4.5

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

x

histogram
true PDF Weibull random number generator interface:

float randweibf(float _alpha,

float _beta,

float _gamma);

float randweibf_pdf(float _x,

float _alpha,

float _beta,

float _gamma);

float randweibf_cdf(float _x,

float _alpha,

float _beta,

float _gamma);

22.5 Gamma

The gamma distribution has a probability density function defined by

fX(x;α, β) =

{
xα−1

Γ(α)βα e
−x/β x ≥ 0

0 else.
(138)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12 14 16

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

x

histogram
true PDF

Gamma random number generator interface:

float randgammaf(float _alpha,

float _beta);

float randgammaf_pdf(float _x,

float _alpha,

float _beta);

float randgammaf_cdf(float _x,

float _alpha,

float _beta);

22.6 Nakagami-m

The Nakagami-m distribution is a versatile stochastic model for modeling radio links [6] and has
often been regarded as the best distribution to model land mobile propagation due to its ability

216 22 RANDOM

to describe fading situations worse than Rayleigh, including one-sided Gaussian [39]. Empirical
evidence regarding the efficacy the Nakagami-m distribution has on fading profiles been presented
in [41, 40]. Thus statistical inference of the Nakagami-m fading parameters are of interest in
the design of adaptive radios such as optimized transmit diversity modes [8, 26] and adaptive
modulation schemes [7]. The Nakagami-m probability density function is given by [34]

fX(x;m,Ω) =

{
2

Γ(m)

(
m
Ω

)m
x2m−1e−(m/Ω)x2 x ≥ 0

0 else.
(139)

where m ≥ 1/2 is the shape parameter and Ω > 0 is the spread parameter. Nakagami-m random
numbers are generated from the gamma distribution. Specifically if R follows a gamma distribution
defined by (138) with parameters α and β, then X =

√
R has a Nakagami-m distribution with

m = α and Ω = β/α.

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

x

histogram
true PDF

Nakagami random number generator interface:

float randnakmf(float _m,

float _omega);

float randnakmf_pdf(float _x,

float _m,

float _omega);

float randnakmf_cdf(float _x,

float _m,

float _omega);

22.7 Rice-K

The Rice-K multi-path channel models a fading envelope by assuming a line of sight (LoS) com-
ponent to the multi-path elements summed at the receiver. The complex path gain at a particular
frequency consists of a fixed (LoS) and fluctuating (diffuse) components. When assuming a nar-
rowband complex Gaussian stochastic process, the time-varying envelope will exhibit a Rice distri-
bution where the K factor is the power ratio of the LoS and diffuse components (often referred to
in dB) and thus is commonly used to describe fading environments. The Rice-K distribution has
a probability density function defined as

fR(r;K,Ω) =
2(K + 1)r

Ω
exp

{
−K − (K + 1)r2

Ω

}
I0

(
2r

√
K(K + 1)

Ω

)
(140)

where Ω = E
{
R2
}

is the average signal power and K is the fading factor (shape parameter). liquid
generates Rice-K random variables using two independent normal random variables. Specifically
if X0 ∼ N(0, σ) and X1 ∼ N(s, σ) then R =

√
X2

0 +X2
1 has follows a Rice-K distribution defined

by (140) where s =
√

ΩK
K+1 and σ =

√
Ω

2(K+1) .

22.8 Data scrambler 217

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

x

histogram
true PDF

Rice-K random number generator interface:

float randricekf(float _m,

float _omega);

float randricekf_pdf(float _x,

float _K,

float _omega);

float randricekf_cdf(float _x,

float _K,

float _omega);

22.8 Data scrambler

Physical layer synchronization of received waveforms relies on independent and identically dis-
tributed underlying data symbols. If the message sequence, however, is too repetitive (such as
’00000....’ or ’11001100....’) and the modulation scheme is BPSK, the synchronizer probably
won’t be able to recover the symbol timing because adjacent symbols are too similar. This is a result
of spectral correlation introduced which can prevent physical layer synchronization techniques from
tracking or even acquisition. Having said that, certain patterns are beneficial to synchronization
and actually help the receiver track to the incoming signal, however these are usually only intro-
duced as a preamble to a frame or packet where the receiver knows what to expect. It is therefore
imperative to increase the short-term entropy of the underlying data to prevent the receiver from
losing its lock on the signal. The data scrambler routine attempts to “whiten” the data sequence
with a bit mask in order to achieve maximum entropy.

22.8.1 interface

The data scrambler has two methods, described here:

scramble data() takes an input sequence of data and scrambles the bits by applying a periodic
mask. The first argument is a pointer to the input data array; the second argument is its
length (number of bytes).

unscramble data() takes an input sequence of data and unscrambles the bits by applying the
reverse mask applied by scramble data(). Just like scramble data(), the first argument is
a pointer to the input data array; the second argument is its length (number of bytes).

See examples/scramble example.c for a full example of the interface.

218 23 SEQUENCE

23 sequence

The sequence module implements a number of binary sequencing objects useful for communications,
including generic binary shift registers, linear feedback shift registers, maximal length codes (m-
sequences), and complementary codes.

23.1 bsequence, generic binary sequence

The bsequence object implements a generic binary shift register and is particularly useful in wireless
communications for correlating long bit sequences in seeking frame preambles and packet headers.
The bsequence object internally stores its sequence of bits as an array of bytes which handles
shifting values even faster than the window family of objects. Listed below is the basic interface to
the bseqeunce object:

bsequence create(n) creates a bsequence object with n bits, filled initially with zeros.

bsequence destroy(q) destroys the object, freeing all internally-allocated memory.

bsequence clear(q) resets the sequence to all zeros.

bsequence init(q,*v) initializes the sequence on an external array of bytes, compactly represent-
ing a string of bits.

bsequence print(q) prints the contents of the sequence to the screen.

bsequence push(q,bit) pushes a bit into the back (right side) of a binary sequence, and in turn
drops the left-most bit. Only the right-most (least-significant) bit of the input is regarded.
For example, pushing a 1 into the sequence 0010011 results in 0100111.

bsequence circshift(q) circularly shifts a binary sequence left, pushing the left-most bit back
into the right-most position. For example, invoking a circular shift on the sequence 1001110

results in 0011101.

bsequence correlate(q0,q1) runs a binary correlation of two bsequence objects q0 and q1,
returning the number of similar bits in both sequences. For example, correlating the sequence
11110000 with 11001100 yields 4.

bsequence add(q0,q1,q2) computes the binary addition of two sequences q0 and q1 storing the
result in a third sequence q2. Binary addition of two bits is equivalent to their logical exclusive
or, ⊕. For example, the binary addition of 01100011 and 11011001 is 10111010.

bsequence mul(q0,q1,q2) computes the binary multiplication of two sequences q0 and q1 storing
the result in a third sequence q2. Binary multiplication of two bits is equivalent to their logical
and, ∧. For example, the binary multiplication of 01100011 and 11011001 is 01000001.

bsequence accumulate(q) returns the 1s in a binary sequence.

bsequence get length(q) returns the length of the sequence (number of bits).

bsequence index(q,i) returns the bit at a particular index of the sequence, starting from the
right-most bit. For example, indexing the sequence 00000001 at index 0 gives the value 1.

23.2 msequence, m-sequence (linear feedback shift register) 219

Table 10: Default m-sequence generator polynomials in liquid

m n g (hex) g (octal) g (binary)

2 3 0x0007 000007 111

3 7 0x000b 000013 1011

4 15 0x0013 000023 10011

5 31 0x0025 000045 100101

6 63 0x0043 000103 1000011

7 127 0x0089 000211 10001001

8 255 0x012d 000455 100101101

9 511 0x0211 001021 1000010001

10 1023 0x0409 002011 10000001001

11 2047 0x0805 004005 100000000101

12 4095 0x1053 010123 1000001010011

13 8191 0x201b 020033 10000000011011

14 16383 0x402b 040053 100000000101011

15 32767 0x8003 100003 1000000000000011

23.2 msequence, m-sequence (linear feedback shift register)

The msequence object in liquid is really just a linear feedback shift register (LFSR), efficiently
implemented using unsigned integers. The LFSR consists of an m-bit shift register, v, and generator
polynomial g. For primitive polynomials, the output sequence has a length n = 2m − 1 before
repeating. This sequence is known as a maximal-length P/N (positive/negative) sequence, and
consists of several useful properties:

1. the output sequence has very good auto-correlation properties; when aligned, the sequence,
of course, correlates perfectly to 1. When misaligned by any amount, however, the sequence
correlates to exactly −1/n.

2. the sequence is easily generated using a linear feedback shift register

Only a certain subset of all possible generator polynomials produce this maximal length sequence.
The default generator polynomials are listed in Table 10, however many more exist.22 Notice that
both the first and last bit of each generator polynomial is a 1. This holds true for all m-sequence
generator polynomials. All generator polynomials of length m = 2 (n = 3) through m = 15
(n = 32767) are given in the data/msequence/ subdirectory of this documentation directory.

Here is a brief description of the msequence object’s interface in liquid:

msequence create(m,g,a) creates an msequence object with an internal shift register length of
m bits using a generator polynomial g and the initial state of the shift register a.

msequence create default(m) creates an msequence object with m bits in the shift register using
the default generator polynomial (e.g. LIQUID MSEQUENCE GENPOLY M6). The initial state is
set to 000...001.

22A list of all m-sequence generator polynomials are provided in doc/data/msequence located in the main liquid
project directory.

220 23 SEQUENCE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

s
e

q
u

e
n

c
e

delay (number of samples)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

a
u
to

-c
o
rr

e
la

ti
o

n

delay (number of samples)

Figure 61: msequence auto-correlation, m = 6 (n = 63), g =1000011

msequence destroy(ms) destroys the object ms, freeing all internal memory.

msequence print(ms) prints the contents of the sequence to the screen.

msequence advance(ms) advances the msequence object’s shift register by computing the binary
dot product of the register with the generator polynomial. The resulting bit is sum of 1s
modulo 2 of the dot product and is fed back into the end of the shift register, as well as
returned to the user.

msequence generate symbol(ms,bps) generates a pseudo-random bps-bit symbol from the shift
register. This is accomplished by advancing the msequence object bps times and shifting the
result back into the symbol. It is important to note that because the sequence repeats every
n bits, if the random number is an even multiple of n, the random sequence will repeat every
bps symbols. For example, if m = 4 (n = 15) and bps is 3, then the sequence will repeat 5
times.

msequence reset(ms) resets the msequence object’s internal shift register to the original state
(typically 000...001).

msequence get length(ms) returns the length of the sequence, n

msequence get state(ms) returns the internal state of the sequence, v

The auto-correlation of the m-sequence with generator polynomial g =1000011 can be seen in
Figure 61. The shift register has six bits (m = 6) and therefore the output sequence is of length

23.3 complementary codes 221

Table 11: Default complementary codes in liquid

1 a0 = 1

b0 = 0

2 a1 = 10

b1 = 11

4 a2 = 1011

b2 = 1000

8 a3 = 10111000

b3 = 10110111

16 a4 = 10111000 10110111

b4 = 10111000 01001000

32 a5 = 10111000 10110111 10111000 01001000

b5 = 10111000 10110111 01000111 10110111

64 a6 = 10111000 10110111 10111000 01001000 10111000 10110111 01000111 10110111

b6 = 10111000 10110111 10111000 01001000 01000111 01001000 10111000 01001000

n = 2m − 1 = 63. Notice that the auto-correlation is equal to unity with no delay, and nearly zero
(−1/63) for all other delays.

23.3 complementary codes

In addition to m-sequences, liquid also implements complementary codes: P/N sequence pairs which
have similar properties to m-sequences. A complementary code pair is one in which the sum of
individual auto-correlations is identically zero for all delays except for the zero-delay which provides
an auto-correlation of unity. The two codes a and b are generated recursively as

ak+1 = [ak bk]

bk+1 =
[
ak b̄k

]
where [·, ·] represents concatenation and (̄·) denotes a binary inversion. Table 11 shows the first
several iterations of the sequence. Notice that the sequence length doubles for each iteration, and
that (with the exception of k = 0) the first half of ak and bk are identical. Figure 62 shows that the
auto-correlation of the two sequences is non-zero for delays other than zero, but that they indeed
do sum to zero.

222 24 UTILITY

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

a

delay (number of samples)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

b

delay (number of samples)

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 10 20 30 40 50 60

a
u

to
-c

o
rr

e
la

ti
o

n

delay (number of samples)

raa
rbb

(raa+rbb)/2

Figure 62: Complementary codes auto-correlation, n = 64

24 utility

The utility module contains useful functions, primarily for bit fast bit manipulation. This includes
packing/unpacking byte arrays, counting ones in an integer, computing a binary dot-product, and
others.

24.1 liquid pack bytes(), liquid unpack bytes(), and liquid repack bytes()

Byte packing is used extensively in the fec (§13) and framing (§16) modules. These methods resize
symbols represented by various numbers of bits. This is necessary to move between raw data arrays
which use full bytes (eight bits per symbol) to methods expecting symbols of different sizes. In
particular, the liquid repack bytes() method is useful when one wants to transmit a block of 64
data bytes using an 8-PSK modem which requires a 3-bit input symbol. For example repacking two
8-bit symbols 00000000,11111111 into six 3-bit symbols gives 000,000,001,111,111,100. Because
16 bits cannot be divided evenly among 3-bit symbols, the last symbol is padded with zeros.

24.2 liquid pack array(), liquid unpack array()

The liquid pack array() and liquid unpack array() methods pack an array with symbols of
arbitrary length. These methods are similar to those in §24.1 but are capable of packing symbols
of any arbitrary length. These are convenient for digital modulation and demodulation of a block
of symbols with different modulation schemes. For example packing an array with five symbols

24.3 liquid lbshift(), liquid rbshift() 223

1000,011,11010,1,000 yields two bytes: 10000111,10101000. Here are the basic interfaces for
packing and unpacking arrays:

// pack binary array with symbol(s)

void liquid_pack_array(unsigned char * _src, // source array [size: _n x 1]

unsigned int _n, // input source array length

unsigned int _k, // bit index to write in _src

unsigned int _b, // number of bits in input symbol

unsigned char _sym_in); // input symbol

// unpack symbols from binary array

void liquid_unpack_array(unsigned char * _src, // source array [size: _n x 1]

unsigned int _n, // input source array length

unsigned int _k, // bit index to write in _src

unsigned int _b, // number of bits in output symbol

unsigned char * _sym_out); // output symbol

Listed below is a simple example of packing symbols of varying lengths into a fixed array of bytes;

1 // file: doc/listings/pack_array.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 unsigned int sym_size[9] = {8, 2, 3, 6, 1, 3, 3, 4, 3};

6 unsigned char input[9] = {

7 0x81, // 1000 0001

8 0x03, // 11

9 0x05, // 101

10 0x3a, // 11 1010

11 0x01, // 1

12 0x07, // 111

13 0x06, // 110

14 0x0a, // 1010

15 0x04 // 10[0] <- last bit is stripped

16 };

17

18 unsigned char output[4];

19

20 unsigned int k=0;

21 unsigned int i;

22 for (i=0; i<9; i++) {

23 liquid_pack_array(output, 4, k, sym_size[i], input[i]);

24 k += sym_size[i];

25 }

26 // output : 1000 0001 1110 1111 0101 1111 1010 1010

27 // symbol : 0000 0000 1122 2333 3334 5556 6677 7788

28 // output is now {0x81, 0xEF, 0x5F, 0xAA};

29 }

24.3 liquid lbshift(), liquid rbshift()

Binary shifting.

224 24 UTILITY

liquid lbshift()

// input : 1000 0001 1110 1111 0101 1111 1010 1010

// output [0] : 1000 0001 1110 1111 0101 1111 1010 1010

// output [1] : 0000 0011 1101 1110 1011 1111 0101 0100

// output [2] : 0000 0111 1011 1101 0111 1110 1010 1000

// output [3] : 0000 1111 0111 1010 1111 1101 0101 0000

// output [4] : 0001 1110 1111 0101 1111 1010 1010 0000

// output [5] : 0011 1101 1110 1011 1111 0101 0100 0000

// output [6] : 0111 1011 1101 0111 1110 1010 1000 0000

// output [7] : 1111 0111 1010 1111 1101 0101 0000 0000

liquid rbshift()

// input : 1000 0001 1110 1111 0101 1111 1010 1010

// output [0] : 1000 0001 1110 1111 0101 1111 1010 1010

// output [1] : 0100 0000 1111 0111 1010 1111 1101 0101

// output [2] : 0010 0000 0111 1011 1101 0111 1110 1010

// output [3] : 0001 0000 0011 1101 1110 1011 1111 0101

// output [4] : 0000 1000 0001 1110 1111 0101 1111 1010

// output [5] : 0000 0100 0000 1111 0111 1010 1111 1101

// output [6] : 0000 0010 0000 0111 1011 1101 0111 1110

// output [7] : 0000 0001 0000 0011 1101 1110 1011 1111

24.4 liquid lbcircshift(), liquid rbcircshift()

Binary circular shifting.

liquid lbcircshift()

// input : 1001 0001 1110 1111 0101 1111 1010 1010

// output [0] : 1001 0001 1110 1111 0101 1111 1010 1010

// output [1] : 0010 0011 1101 1110 1011 1111 0101 0101

// output [2] : 0100 0111 1011 1101 0111 1110 1010 1010

// output [3] : 1000 1111 0111 1010 1111 1101 0101 0100

// output [4] : 0001 1110 1111 0101 1111 1010 1010 1001

// output [5] : 0011 1101 1110 1011 1111 0101 0101 0010

// output [6] : 0111 1011 1101 0111 1110 1010 1010 0100

// output [7] : 1111 0111 1010 1111 1101 0101 0100 1000

liquid rbcircshift()

// input : 1001 0001 1110 1111 0101 1111 1010 1010

// output [0] : 1001 0001 1110 1111 0101 1111 1010 1010

// output [1] : 0100 1000 1111 0111 1010 1111 1101 0101

// output [2] : 1010 0100 0111 1011 1101 0111 1110 1010

// output [3] : 0101 0010 0011 1101 1110 1011 1111 0101

// output [4] : 1010 1001 0001 1110 1111 0101 1111 1010

// output [5] : 0101 0100 1000 1111 0111 1010 1111 1101

// output [6] : 1010 1010 0100 0111 1011 1101 0111 1110

// output [7] : 0101 0101 0010 0011 1101 1110 1011 1111

24.5 liquid lshift(), liquid rshift() 225

24.5 liquid lshift(), liquid rshift()

Byte-wise shifting.
liquid lshift()

// input : 1000 0001 1110 1111 0101 1111 1010 1010

// output [0] : 1000 0001 1110 1111 0101 1111 1010 1010

// output [1] : 1110 1111 0101 1111 1010 1010 0000 0000

// output [2] : 0101 1111 1010 1010 0000 0000 0000 0000

// output [3] : 1010 1010 0000 0000 0000 0000 0000 0000

// output [4] : 0000 0000 0000 0000 0000 0000 0000 0000

liquid rshift()

// input : 1000 0001 1110 1111 0101 1111 1010 1010

// output [0] : 1000 0001 1110 1111 0101 1111 1010 1010

// output [1] : 0000 0000 1000 0001 1110 1111 0101 1111

// output [2] : 0000 0000 0000 0000 1000 0001 1110 1111

// output [3] : 0000 0000 0000 0000 0000 0000 1000 0001

// output [4] : 0000 0000 0000 0000 0000 0000 0000 0000

24.6 liquid lcircshift(), liquid rcircshift()

Byte-wise circular shifting.
liquid lcircshift()

// input : 1000 0001 1110 1111 0101 1111 1010 1010

// output [0] : 1000 0001 1110 1111 0101 1111 1010 1010

// output [1] : 1110 1111 0101 1111 1010 1010 1000 0001

// output [2] : 0101 1111 1010 1010 1000 0001 1110 1111

// output [3] : 1010 1010 1000 0001 1110 1111 0101 1111

// output [4] : 1000 0001 1110 1111 0101 1111 1010 1010

liquid rcircshift()

// input : 1000 0001 1110 1111 0101 1111 1010 1010

// output [0] : 1000 0001 1110 1111 0101 1111 1010 1010

// output [1] : 1010 1010 1000 0001 1110 1111 0101 1111

// output [2] : 0101 1111 1010 1010 1000 0001 1110 1111

// output [3] : 1110 1111 0101 1111 1010 1010 1000 0001

// output [4] : 1000 0001 1110 1111 0101 1111 1010 1010

24.7 miscellany

This section describes the bit-counting methods which are used extensively throughout liquid,
particularly the fec (§13) and sequence (§23) modules. Integer sizes vary for different machines;
when liquid is initially configured (see Chapter 26), the size of the integer is computed such that the
fastest method can be computed without performing unnecessary loop iterations or comparisons.

liquid count ones(x) counts the number of 1s that exist in the integer x. For example, the
number 237 is represented in binary as 11101101, therefore liquid count ones(237) returns
6.

226 24 UTILITY

liquid count ones mod2(x) counts the number of 1s that exist in the integer x, modulo 2; in
other words, it returns 1 if the number of ones in x is odd, 0 if the number is even. For
example, liquid count ones mod2(237) return 0.

liquid bdotprod(x,y) computes the binary dot-product between two integers x and y as the sum
of ones in x ∧ y, modulo 2 (where ∧ is the logical ‘and’ operation). This is useful in linear
feedback shift registers (see §23.2 on m-sequences) as well as certain forward error-correction
codes (see §13.2 on Hamming codes). For example, the binary dot product between 10110011

and 11101110 is 1 because 10110011 ∧ 11101110 = 10100010 which has an odd number of
1s.

liquid count leading zeros(x) counts the number of leading zeros in the integer x. This is
dependent upon the size of the integer for the target machine which is usually either two or
four bytes.

liquid msb index(x) computes the index of the most-significant bit in the integer x. The function
will return 0 for x = 0. For example if x = 129 (10000001), the function will return 8.

227

25 experimental

The experimental module is a placeholder for modules which haven’t yet been approved for release,
but might eventually be incorporated into the library. By default the experimental module is
disabled and none of its modules are compiled or installed. It is enabled using the configure flag
--enable-experimental and includes the internal header file include/liquid.experimental.h.

25.1 fbasc (filterbank audio synthesizer codec)

The fbasc audio codec implements an AAC-like compression algorithm, using the modified discrete
cosine transform as a loss-less channelizer. The resulting channelized data are then quantized based
on their spectral energy levels and then packed into a frame which the decoder can then interpret.
The result is a lossy encoder (as a result of quantization) whose compression/quality levels can be
easily varied.

Specifically, fbasc uses sub-band coding to allocate quantization bits to each channel in order to
minimize distortion of the reconstructed signal. Sub-bands with higher variance (signal ’energy’)
are assigned more bits. This is the heart of the codec, which exploits several components typical
of audio signals and aspects of human hearing and perception:

1. The majority of audio signals (including music and voice) have a strong time-frequency local-
ization; that is, they only occupy a small fraction of audible frequencies for a short duration.
This is particularly true for voiced signals (e.g. vowel sounds).

2. The human ear (and brain) tends to be quite forgiving of spectral compression and often
cannot easily distinguish between neighboring frequency components.

There are several benefits to using fbasc over other compression algorithms such as CVSD
(see src/audio/readme.cvsd.txt) and auto-regressive models, the main being that the algorithm is
theoretically lossless (i.e. perfect reconstruction) as the bit rate increases. As a result, the codec is
limited only by the quantization noise on each channel.

Here are some useful definitions, as used in the fbasc code:

MDCT the modified discrete cosine transform is a lapped discrete cosine transform which uses
a special windowing function to ensure perfect reconstruction on its inverse. The transform
operates on 2M time-domain samples (overlapped by M) to produce M frequency-domain
samples. Conversely, the inverse MDCT accepts M frequency-domain samples and produces
2M time-domain samples which are windowed and then overlapped to reconstruct the original
signal. For convenience, we may refer to M time-domain samples as a ’symbol.’

symbol one block of M time-domain samples upon which the MDCT operates.

channel one of the M frequency-domain components as a result of applying the MDCT. This
is somewhat equivalent to a discrete Fourier transform ’bin.’ Note than M is equal to the
number of channels in analysis.

frame a set of MDCT symbols upon which the fbasc codec runs its analysis. Because the codec
uses time-frequency localization for its encoding, it is necessary for the codec to gain enough
statistical information about the original signal without losing temporal stationarity. The

228 25 EXPERIMENTAL

codec typically operates on several symbols, however, the exact number depends on the
application.

25.1.1 Interface

fbasc create() creates an fbasc encoder/decoder object, allocating memory as necessary, and
computing internal parameters appropriately.

fbasc destroy() destroys an fbasc encoder/decoder object, freeing internally-allocated memory.

fbasc encode() encode a frame of data, storing the header and frame data separately. This
separation allows the user to use different forward error-correction codes (if desired) to protect
the header differently than the rest of the frame. It is important to keep the two together,
however, as the header is a description of how to decode the frame.

fbasc decode() decodes a frame of data, generating the reconstructed time series.

25.1.2 Useful properties

• Because of the nature of the MDCT, frames will overlap by M samples (one symbol). This
introduces a reconstruction delay of M samples, noticeable at the decoder.

25.2 gport

The gport object implements a generic port to share data between asynchronous threads. The
port itself is really just a circular (ring) buffer containing a mutually-exclusive locking mechanism
to allow processes running on independent threads to access its data. Because no other modules
rely on the gport object and because it requires the pthread library, it is likely to be removed from
liquid in the near future and likely put into another library, e.g. liquid-threads.

There are two ways to access the data in the gport object: direct memory access and indirect
(copied) memory access, each with distinct advantages and disadvantages. Regardless of which
interface you use, the model is equivalent: a buffer of data (initially empty) is created. The
producer is the method in charge of writing to the buffer (or “producing” the data). The consumer
is the method in charge of reading the data from the buffer (or “consuming” it). The producer
and consumer methods can exist on completely separate threads, and do not need to be externally
synchronized. The gport object synchronizes the data between the ports.

25.2.1 Direct Memory Access

Using gport via direct memory access is a multi-step process, equivalent for both the producer and
consumer threads. For the sake of simplicity, we will describe the process for writing data to the
port on the producer side; the consumer process is identical.

1. the producer requests a lock on the port of a certain number of samples.

2. once the request is serviced, the port returns a pointer to an array of data allocated internally
by the port itself.

25.2 gport 229

3. the producer writes its data at this location, not exceeding the original number of samples
requested.

4. the producer then unlocks the port, indicating how many samples were actually written to
the buffer. This allows the consumer thread to read data from the buffer.

5. this process is repeated as necessary.

Listed below is a minimal example demonstrating the direct memory access method for the gport

object.

1 // file: doc/listings/gport.direct.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // create the port

6 // size : 1024

7 // type : int

8 gport p = gport_create(1024,sizeof(int));

9

10 // producer requests 256 samples (blocking)

11 int * w;

12 w = (int*) gport_producer_lock(p,256);

13

14 // producer writes data to w here

15

16 // once data are written, producer unlocks the port

17 gport_producer_unlock(p,256);

18

19 // repeat as necessary

20

21 // destroy the port object

22 gport_destroy(p);

23 }

25.2.2 Indirect/Copied Memory Access

Indirect (or “copied”) memory access appears similar...

1 // file: doc/listings/gport.indirect.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 // create the port

6 // size : 1024

7 // type : int

8 gport p = gport_create(1024,sizeof(int));

9

10 // create buffer for writing

11 int w[256];

12

230 25 EXPERIMENTAL

13 // producer writes data to w here

14

15 // producer writes 256 values to port

16 gport_produce(p,(void*)w,256);

17

18 // repeat as necessary

19

20 // destroy the port object

21 gport_destroy(p);

22 }

25.2.3 Key differences between memory access modes

While the direct memory access method provides a simpler interface–in the sense that no external
buffers are required–the user must take care in not writing outside the bounds of the memory
requested. That is, if 256 samples are locked, only 256 values are available. Writing more data
will produce unexpected results, and could likely result in a segmentation fault. Furthermore,
the buffer must wait until the entire requested block is available before returning. This could
potentially increase the amount of time that each process is waiting on the port. Additionally,
if one requests too many samples on both the producer and consumer sides, the port could wait
forever. For example, assume one initially creates a gport with 100 elements and the producer
initially writes 30 samples. Immediately following, the consumer requests a lock for 100 samples
which isn’t serviced because only 30 are available. Following that, the producer requests a lock
for 100 samples which isn’t serviced because only 70 are available. This is a deadlock condition
where both threads are waiting for data, and neither request will be serviced. The solution to this
problem is actually fairly simple; the port should be initially created as the sum of maximum size
of the producer’s and consumer’s requests. That is, if the producer will at most ever request a lock
on 50 samples and the consumer will at most request a lock of 70 samples, then the port should be
initially created with a buffer size of 120. This guarantees that the deadlock condition will never
occur.

Alternatively one may use the indirect memory access method which guarantees that the dead-
lock condition will never occur, even if the buffer size is 1 and the producer writes 1000 samples
while the consumer reads 1000. This is because both the internal producer and consumer methods
will write the data as it becomes available, and do not have to wait internally until an entire block
of the requested size is ready. This is the benefit of using the indirect memory access interface of the
gport object. Indirect memory access, however, requires the use of memory allocated externally
to the port.

It is important to stay consistent with the memory access mode used within a thread, however
mixed memory access modes can be used between threads on the same port. For example, the
producer thread may use the direct memory access mode while the consumer uses the indirect
memory access mode.

25.2.4 Interface

gport create() creates a new gport object with an internal buffer of a certain length.

gport destroy() destroys a gport object, signaling end of message to any connected ports.

25.2 gport 231

gport producer lock() locks a requested number of samples for producing, returning a void

pointer to the locked data array directly. Invoking this method can be thought of as asking
the port to allocate a certain number of samples for writing. Special care must be taken by
the user not to write more elements to the buffer than were requested. This function is a
blocking call and waits for the data to become available or an end of message signal to be
received. The data are locked until gport producer unlock() is invoked. The number of
unlocked samples does not have to match but cannot exceed those which are locked.

gport producer unlock() unlocks a requested number of samples from the port. Use in conjunc-
tion with gport producer lock(). Invoking this method can be thought of as telling the port
“I have written n samples to the buffer you gave me earlier; release them to the consumer for
reading.” The number of samples written to the port cannot exceed the initial request (e.g. if
you request a lock for 100 samples, you should never try to unlock more than 100). There is
no internal error-checking to ensure this. Failure to comply could result in over-writing data
internally, and corrupt the consumer side.

gport produce() produces n samples to the port from an external buffer. This method is a
blocking call and waits for the requested data to become available or an end of message
signal to be received.

gport produce available() operates just like gport produce() except will write as many sam-
ples as are available when the function is called. Invoking this method is like telling the buffer
“I have n samples, so write as many as you can right now.” It will always wait for at least
one sample to become available and blocks until this condition is met.

gport consumer lock() locks a requested number of samples for consuming, returning a void

pointer to the locked data array directly. Invoking this method can be thought of as asking
the port to wait for a certain number of samples to be read. Special care must be taken by
the user not to read more elements to the buffer than were requested. This function is a
blocking call and waits for enough samples to become available or an end of message signal to
be received. The data will be locked until gport consumer unlock() is invoked. The number
of unlocked samples does not have to match but cannot exceed those which are locked.

gport consumer unlock() unlocks a requested number of samples from the port. Use in conjunc-
tion with gport consumer lock(). Invoking this method can be though of as telling the port
“I have read n samples from the buffer you gave me earlier; release them to the producer for
writing.” The number of samples read from the port cannot exceed the initial request (e.g.
if you request a lock for 100 samples, you should never try to unlock more than 100).

gport consume() consumes n samples from the port and writes to an external buffer. This method
is a blocking call and waits for the requested data to become available or an end of message
signal to be received.

gport consume available() operates just like gport consume() except will read as many samples
as are available when the function is called. Invoking this method is like telling the buffer “I
have a buffer of n samples, so write to it as many as you can right now.” It will always wait
for at least one sample to become available and blocks until this condition is met.

232 25 EXPERIMENTAL

gport signal eom() signals end of message to any connected gport. This tells the port to stop
waiting for data (on both the producer and consumer side) and return. This method prevents
lock conditions where, e.g., the producer is waiting for several samples to become available,
but the consumer has finished its process. This method is normally invoked only during
gport destroy().

gport clear eom() (untested) clears the end of message signal.

25.2.5 Problem areas

When using the direct memory access method, the size of the data request during lock is limited
by the size of the port. [[race/lock conditions?]]

25.3 dds (direct digital synthesizer)

25.4 qmfb (quadrature mirror filter bank)

25.5 qnsearch

The qnsearch object in liquid implements the Quasi-Newton search algorithm which uses the
first- and second-order derivatives (gradient vector and Hessian matrix) in its update equation.
Newtonian-based search algorithms approximate the function to be nearly quadratic near its opti-
mum which requires the second partial derivative (Hessian matrix) to be computed or estimated at
each iteration. Quasi-Newton methods circumvent this by approximating the Hessian with succes-
sive gradient computations (or estimations) with each step. The Quasi-Newton method is usually
faster than the gradient search due in part to its second-order (rather than a first-order) Taylor
series expansion about the function of interest, however its update criteria is significantly more
involved. In particular the step size must be sufficiently conditioned otherwise the algorithm can
result in instability.

An example of the qnsearch interface is listed below. Notice that its interface is virtually
identical to that of gradient search.

1 // file: doc/listings/qnsearch.example.c

2 # include <liquid / liquid.h>

3

4 int main() {

5 unsigned int num_parameters = 8; // search dimensionality

6 unsigned int num_iterations = 100; // number of iterations to run

7 float target_utility = 0.01f; // target utility

8

9 float optimum_vect[num_parameters];

10

11 // ...

12

13 // create qnsearch object

14 qnsearch q = qnsearch_create(NULL,

15 optimum_vect,

16 num_parameters,

17 &rosenbrock,

25.5 qnsearch 233

18 LIQUID_OPTIM_MINIMIZE);

19

20 // execute batch search

21 qnsearch_execute(q, num_iterations, target_utility);

22

23 // execute search one iteration at a time

24 unsigned int i;

25 for (i=0; i<num_iterations; i++)

26 qnsearch_step(q);

27

28 // clean it up

29 qnsearch_destroy(q);

30 }

234

Part IV

Installation

235

26 Installation Guide

The liquid DSP library can be easily built from source and is available from several places. The
two most typical means of distribution are a compressed archive (a tarball) and cloning the source
repository. Tarballs are generated with each stable release and are recommended for users not
requiring bleeding edge development. Users wanting the very latest version (in addition to every
other version) should clone the liquid Git repository.

26.1 Building & Dependencies

The liquid signal processing library was intended to be universally deployable to a number of
platforms by eliminating dependencies on external libraries and programs. That being said, liquid
still does require a bare minimum build environment to operate. As such the library requires only
the following:

• gcc, the GNU compiler collection (or equivalent)

• libc, the standard C library

• libm, the standard math library (eventually will be phased out to optional)

While liquid was designed to be portable, requiring a minimal amount of dependencies, the project
will take advantage of other libraries if they are installed on the target machine. These optional
packages are:

• fftw3 for computationally efficient fast Fourier transforms

• libfec for an extended number of forward error-correction codecs (including convolutional
and Reed-Solomon)

• liquid-fpm (liquid fixed-point math library)

The build system checks to see if they are installed during the configure process and will generate
an appropriate config.h if they are.

26.2 Building from an archive

Download the compressed archive liquid-dsp-v.v.v.tar.gz to your local machine where v.v.v

denotes the version of the release (e.g. liquid-dsp-1.2.0.tar.gz). Check the validity of the
tarball with the provided MD5 or SHA1 key. Unpack the tarball

$ tar -xvf liquid-dsp-v.v.v.tar.gz

Move into the directory and run the configure script and make the library.

$ cd liquid-dsp-v.v.v

$./configure

$ make

make install

236 27 TARGETS

26.3 Building from the Git repository

Development of liquid uses Git [17], a free and open-source distributed version control system. The
benefits of Git over many other version control systems are numerous and the list is too long to
give here; however one of the most important aspects is that each clone holds a copy of the entire
repository with a complete history and record of each revision. The main repository for liquid is
hosted online by github [18] and can be cloned on your local machine via

$ git clone git://github.com/jgaeddert/liquid-dsp.git

Move into the directory and check out a particular tag using the git checkout command.23 Build
as before with the archive, but with the additional bootstrapping step.

$ cd liquid-dsp

$ git checkout v1.0.0

$./reconf

$./configure

$ make

make install

27 Targets

This section lists the specific targets in the main liquid project. A basic list can be printed by
invoking “make help” on the command line. This prints the following to the standard output:

all - build shared library (default)

help - print list of targets (see documentation for more)

install - installs the libraries and header files in the host system

uninstall - uninstalls the libraries and header files in the host system

check - build and run autotest scripts

bench - build and run all benchmarks

examples - build all examples binaries

sandbox - build all sandbox binaries

doc - build documentation (doc/liquid.pdf)

world - build absolutely everything

clean - clean build (objects, dependencies, libraries, etc.)

distclean - removes everything except the originally distributed files

The remainder of this section discusses some of the more important and relevant targets.

27.1 Examples (make examples)

All examples are built as stand-alone programs not build by the target all by default. You may
build all of the example binaries at one time by running

make examples

23To list available tags run git tag -l.

27.2 Autotests (make check) 237

Sometimes, however, it is useful to build one example individually. This can be accomplished by
directly targeting its binary (e.g. “make examples/modem example”). The example then can be
run at the command line (e.g. “./examples/modem example”).

The examples are probably the best way to understand how each signal processing element
works. Each example targets a specific functionality of liquid, such as FIR filtering, forward error
correction, digital demodulation, etc. A number of the example programs when run will generate
an output .m file which can be run directly in Octave [11]. This is particularly useful for visualizing
filtering operations. Most of the examples have a brief description at the top of the file; these
descriptions are also available in the examples/README file for convenience. Some of the examples
are experimental and will not be built by default (see §25).

27.2 Autotests (make check)

Source code validation is a critical step in any software library, particularly for verifying the porta-
bility of code to different processors and platforms. Packaged with liquid are a number of automatic
test scripts to validate the correctness of the source code. The test scripts are located under each
module’s tests directory and take the form of a C header file. The testing framework oper-
ates similarly to CppUnit [9] and cxxtest [10], however it is written in C. The generator script
scripts/autoscript parses these header files looking for the key “void autotest ” which corre-
sponds to a specific test. The script generates the header file autotest include.h which includes
all the modules’ test headers as well as several organizing structures for keeping track of which tests
have passed or failed. The result is an executable file, xautotest, which can be run to validate the
functional correctness of liquid on your target platform.

27.2.1 Macros

Each module contains a number of autotest scripts which use pre-processor macros for asserting
the functional correctness of the source code.

CONTEND EQUALITY(x, y) asserts that x == y and fails if false.

CONTEND INEQUALITY(x, y) asserts that x differs from y.

CONTEND GREATER THAN(x, y) asserts that x > y.

CONTEND LESS THAN(x, y) asserts that x < y.

CONTEND DELTA(x, y,∆) asserts that |x− y| < ∆

CONTEND EXPRESSION(expr) asserts that some expression is true.

CONTEND SAME DATA(ptrA, ptrB, n) asserts that each of n byte values in the arrays referenced by
ptrA and ptrB are equal.

AUTOTEST PASS() passes unconditionally.

AUTOTEST FAIL(string) prints string and fails unconditionally.

AUTOTEST WARN(string) simply prints a warning. The autotest program will keep track of which
tests elicit warnings and add them to the list of unstable tests.

238 27 TARGETS

Here are some examples:

CONTEND EQUALITY(1,1) will pass

CONTEND EQUALITY(1,2) will fail

27.2.2 Running the autotests

The result is an executable file named xautotest which has several options for running. These
options may be viewed with either the -h or -u flags (for help/usage information).

$./xautotest -h

Usage: xautotest [OPTION]

Execute autotest scripts for liquid-dsp library.

-h,-u display this help and exit

-t[ID] run specific test

-p[ID] run specific package

-L lists all scripts

-l lists all packages

-x stop on fail

-s[STRING] run all tests matching search string

-v verbose

-q quiet

Simply running the program without any arguments executes all the tests and displays the results
to the screen. The is the default response of the target make check.

27.3 Benchmarks (make bench)

Packaged with liquid are benchmarks to determine the speed each signal processing element can
run on your machine. You can build the benchmark program with make benchmark, and view the
execution options with a -u or -h flag for usage/help information:

$./benchmark -h

Usage: benchmark [OPTION]

Execute benchmark scripts for liquid-dsp library.

-h,-u display this help and exit

-v verbose

-q quiet

-e estimate cpu clock frequency and exit

-c set cpu clock frequency (Hz)

-n[COUNT] set number of base trials

-p[ID] run specific package

-b[ID] run specific benchmark

-t[SECONDS] set minimum execution time (s)

-l list available packages

-L list all available scripts

-s[STRING] run all scripts matching search string

-o[FILENAME] export output

27.4 Documentation (make doc) 239

By default, running “make bench” is equivalent to simply executing the ./benchmark program
which runs all of the benchmarks sequentially. Initially the tool provides an estimate of the proces-
sor’s clock frequency; while not necessarily accurate, this is necessary to gauge the relative speed
by which the benchmarks will run. The tool will then estimate the number of trials so that each
benchmark will take between 50 and 500 ms to run. Listed below is the output of the first several
benchmarks:

estimating cpu clock frequency...

performed 67108864 trials in 650.0 ms

estimated clock speed: 2.468 GHz

setting number of trials to 246754

0: null

0 : null : 23.59 M trials in 220.00 ms (107.212 M t/s, 22.00 cycles/t)

1: agc

1 : agc_crcf : 1.92 M trials in 270.00 ms (7.093 M t/s, 337.50 cycles/t)

2 : agc_crcf_squelch : 1.92 M trials in 280.00 ms (6.840 M t/s, 350.00 cycles/t)

3 : agc_crcf_locked : 15.32 M trials in 700.00 ms (21.887 M t/s, 109.38 cycles/t)

2: window

4 : windowcf_n16 : 7.55 M trials in 260.00 ms (29.029 M t/s, 81.25 cycles/t)

5 : windowcf_n32 : 7.55 M trials in 260.00 ms (29.029 M t/s, 81.25 cycles/t)

6 : windowcf_n64 : 7.55 M trials in 270.00 ms (27.954 M t/s, 84.38 cycles/t)

7 : windowcf_n128 : 7.55 M trials in 260.00 ms (29.029 M t/s, 81.25 cycles/t)

8 : windowcf_n256 : 7.55 M trials in 260.00 ms (29.029 M t/s, 81.25 cycles/t)

3: dotprod_cccf

9 : dotprod_cccf_4 : 1.89 M trials in 320.00 ms (5.897 M t/s, 400.00 cycles/t)

10 : dotprod_cccf_16 : 471.73 k trials in 320.00 ms (1.474 M t/s, 1.60 k cycles/t)

11 : dotprod_cccf_64 : 117.93 k trials in 300.00 ms (393.107 k t/s, 6.00 k cycles/t)

12 : dotprod_cccf_256 : 29.48 k trials in 300.00 ms (98.267 k t/s, 24.00 k cycles/t)

4: dotprod_crcf

13 : dotprod_crcf_4 : 1.89 M trials in 20.00 ms (94.347 M t/s, 25.00 cycles/t)

14 : dotprod_crcf_16 : 471.73 k trials in 10.00 ms (47.173 M t/s, 50.00 cycles/t)

15 : dotprod_crcf_64 : 117.93 k trials in 0.00 ps (inf T t/s, 0.00 p cycles/t)

16 : dotprod_crcf_256 : 29.48 k trials in 20.00 ms (1.474 M t/s, 1.60 k cycles/t)

For this run the clock speed was estimated to be 2.468 GHz. Benchmarks are sub-divided into
packages which group similar signal processing algorithms together. For example, package 3 above
refers to benchmarking the dotprod cccf object which computes the vector dot product between
two n-point arrays of complex floats. Specifically, benchmark 11 refers to the speed of an n = 64-
point dot product. In this run the benchmarking tool computed approximately 117,930 64-point
complex dot products in 300 ms (about 393,107 trials per second). For the estimated clock rate this
means that the algorithm requires approximately 6,000 clock cycles to compute a single 64-point
complex vector dot product.

27.4 Documentation (make doc)

Specifically, “make doc” builds this .pdf file you’re reading right now. The documentation requires
a few additional packages to build from scratch:

• pdflatex, the LATEXengine responsible for making this document with all those pretty equa-
tions

• bibtex, the package for creating the bibliography

240 REFERENCES

• gnuplot, a program for plotting graphics

• epstopdf, conversion from .eps to .pdf, required for the figures created with gnuplot

• pygments, the syntax highlighting engine responsible for generating all the fancy code listings
given throughout this document. The command-line equivalent is called pygmentize.

References

[1] Antonio Assalini and Andrea M. Tonello. Improved Nyquist Pulses. IEEE Communications
Letters, 8(2), February 2004.

[2] Norman C. Beaulieu, Christopher C. Tan, and Mohamed Oussama Damen. A “Better Than”
Nyquist Pulse. IEEE Communications Letters, 5(9), September 2001.

[3] E. R. Berlekamp. Decoding the golay code. Technical Report 32-1526, JPL, July-August 1972.

[4] Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near Shannon limit error-
correcting coding and decoding. In ICC’93, pages 1064–1070, 1993.

[5] Roland E. Best. Phase-Locked Loops: Design, Simulation, and Applications. McGraw-Hill, 3
edition, 1997.

[6] W. R. Braun and U. Dersch. A physical mobile radio channel model. IEEE Transactions on
Vehicular Technology, 40:472–482, February 1991.

[7] S. Catreux, V. Erceg, and R. Heath. Adaptive Modulation and MIMO Coding for Broadband
Wireless Data Networks. IEEE Communications Magazine, pages 108–115, June 2002.

[8] J. K. Cavers. Optimized use of diversity modes in transmitter diversity systems. In Vehicular
Technology Conference, pages 1768–1773, April 1999.

[9] CppUnit website. http://sourceforge.net/projects/cppunit/, 2010.

[10] cxxtest website. http://cxxtest.tigris.org/, 2010.

[11] John W. Eaton. Octave Website. http://www.gnu.org/software/octave/, 2010.

[12] fredric j. harris. Multirate Signal Processing for Communication Systems. Prentice Hall, 2004.

[13] fredric j. harris, Chris Dick, Sridhar Seshagiri, and Karl Moerder. An Improved Square-Root
Nyquist Shaping Filter. In Proceedings of the Software-Defined Radio Forum, 2005.

[14] Matteo Frigo. FFTW Website. www.fftw.org/, 2010.

[15] R. G. Gallager. Low Density Parity Check Codes. IRE Transactions on Information Theory,
IT-8:21–28, January 1962.

[16] GCC, the GNU Compiler Collection (official website). http://gcc.gnu.org/, 2011.

[17] official Git website. http://git-scm.com/, 2011.

REFERENCES 241

[18] official github website. http://github.com/, 2011.

[19] GNU Radio (official website). http://gnuradio.org/, 2 2011.

[20] Stéphane Le Goff, Alain Glavieux, and Claude Berrou. Turbo-Codes and High Spectral Effi-
ciency Modulation. In ICC’94, pages 645–649, 1994.

[21] Simon S. Haykin. Adaptive Filter Theory. Prentice Hall, Upper Saddle River, N.J., 4 edition,
2002.

[22] Carl W. Helstrom. Statistical Theory of Signal Detection. Pergamon Press, New York, 1960.

[23] Carl W. Helstrom. Computing the Generalized Marcum Q-Function. IEEE Transactions on
Information Theory, 38(4):1422—1428, 7 1992.

[24] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation of Complex
Fourier Series. Math. Comp., 19:297–301, 1965.

[25] Phil Karn. libfec website. http://www.ka9q.net/code/fec/, 2007.

[26] Y. C. Ko and M. Alouini. Estimation of Nakagami-m fading channel parameters with appli-
cation to optimized transmitter diversity systems. IEEE Transactions on Wireless Communi-
cations, 2(2):250–259, March 2003.

[27] Shu Lin and Daniel L. Costello Jr. Error Control Coding. Prentice Hall, New Jersey, 2 edition,
2004.

[28] The Linux Kernel Archives—Official Website. http://www.kernel.org/, 2011.

[29] Umberto Mengali and Aldo N. D’Andrea. Synchronization Techniques for Digital Receivers.
Applications of Communications Theory. Springer, New York, 1 edition, 1997.

[30] Kurt H. Mueller and Markus Müller. Timing Recovery in Digital Synchronous Data Receivers.
IEEE Transactions on Communications, COM-24(5), May 1976.

[31] H. J. Orchard. The Roots of the Maximally Flat-Delay Polynomials. In IEEE Transactions
on Circuit Theory, September 1965.

[32] Sophocles J. Orfanidis. Lecture Notes on Elliptic Filter Design.
http://www.ece.rutgers.edu/ orfanidi/hpeq, 2006.

[33] Open Source SCA Implementation::Embedded (official website). http://ossie.wireless.vt.edu/,
2 2011.

[34] A. Papoulis and S. U. Pillai. Probability, Random Variables and Stochastic Processes. McGraw-
Hill, Boston, 4 edition, 2002.

[35] J. G. Proakis. Digital Communications. McGraw-Hill, New York, 4 edition, 2001.

[36] Python Programming Language—Official Website. http://python.org/, 2011.

242 REFERENCES

[37] LI Qiang, DU Peng, and BI Guangguo. Generalized Soft Decision Metric generation for
PSK/MQAM without Noise Variance Knowledge. In IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communication, pages 1027–1030, 2003.

[38] Charles M. Rader. Discrete Fourier Transforms When the Number of Data Samples is Prime.
Proceedings of the IEEE, 56(6):1107–1108, June 1968.

[39] M. K. Simon and M. S. Alouini. A Unified Approach to the Performance Analysis of Digital
Communication over Generalized Fading Channels. Proceedings of the IEEE, 86(9), September
1998.

[40] H. Suzuki. A Statistical model for Urban Radio Propagation. IEEE Transactions on Commu-
nications, COM-25:673–80, July 1977.

[41] G. L. Turin. Introduction to Spread-Spectrum Anti-Multipath Techniques and Their Appli-
cations to Urban Digital Radio. Proceedings of the IEEE, 68:328–53, March 1980.

[42] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall Signal Processing
Series. Prentice Hall, New Jersey, 1993.

[43] official vim website. http://www.vim.org/, 2011.

[44] Roger E. Ziemer, William H. Tranter, and D. Ronald Fannin. Signals and Systems: Continuous
and Discrete. Prentice Hall, New Jersey, 4 edition, 1998.

	I Introduction to liquid
	Background and History
	Quick Start Guide
	Building from a Tarball
	Cloning the Git Repository
	Additional make Targets

	Data Structures in liquid
	Basic Life Cycle
	Why C?
	Data Types
	Building/Linking with C++
	Learning by example

	II Tutorials
	Tutorial: Phase-Locked Loop
	Problem Statement
	Setting up the Environment
	Designing the Loop Filter
	Final Program

	Tutorial: Forward Error Correction
	Problem Statement
	Setting up the Environment
	Creating the Encoder/Decoder
	Final Program

	Tutorial: Framing
	Problem Statement
	Setting up the Environment
	Creating the Frame Generator
	Creating the Frame Synchronizer
	Putting it All Together
	Final Program

	Tutorial: OFDM Framing
	Problem Statement
	Setting up the Environment
	OFDM Framing Structure
	Creating the Frame Generator
	Creating the Frame Synchronizer
	Putting it All Together
	Final Program

	III Modules
	agc (automatic gain control)
	Theory
	Locking
	Squelch
	Methodology
	auto-squelch

	Interface

	audio
	cvsd (continuously variable slope delta)
	Theory
	Pre-/Post-Filtering
	Interface
	Example

	buffer
	window buffer
	wdelay delay buffer

	dotprod (vector dot product)
	Specific machine architectures
	Interface

	equalization
	System Description
	eqlms (least mean-squares equalizer)
	eqrls (recursive least-squares equalizer)
	Interface
	Blind Equalization
	Comparison of eqlms and eqrls Object Families

	fec (forward error correction)
	Cyclic Redundancy Check (Error Detection)
	h74, h84, h128 (Hamming codes)
	rep3, rep5 (simple repeat codes)
	g2412, Golay(24,12) block code
	SEC-DED block codes
	secded2216, SEC-DED(22,16) block code
	secded3932, SEC-DED(39,32) block code
	secded7264, SEC-DEC(72,64) block code

	libfec (convolutional and Reed-Solomon codes)
	Interface
	Soft Decoding

	Performance

	fft (fast Fourier transform)
	Complex Transforms
	Real even/odd DFTs
	FFT_REDFT00 (DCT-I)
	FFT_REDFT10 (DCT-II)
	FFT_REDFT01 (DCT-III)
	FFT_REDFT11 (DCT-IV)
	FFT_RODFT00 (DST-I)
	FFT_RODFT10 (DST-II)
	FFT_RODFT01 (DST-III)
	FFT_RODFT11 (DST-IV)

	spgram (spectral periodogram)

	filter
	autocorr (auto-correlator)
	decim (decimator)
	firfarrow (finite impulse response Farrow filter)
	firfilt (finite impulse response filter)
	firdes (finite impulse response filter design)
	Window prototype
	liquid_firdes_nyquist() (Nyquist filter design)
	liquid_firdes_rnyquist() (square-root Nyquist filter design)
	GMSK Filter Design
	firdespm (Parks-McClellan algorithm)
	Miscellaneous functions

	firhilbf (finite impulse response Hilbert transform)
	iirfilt (infinite impulse response filter)
	iirdes (infinite impulse response filter design)
	liquid_iirdes(), the simplified method
	internal description
	Available Filter Types
	bilinear_zpkf (Bilinear z-transform)
	Filter transformations
	Filter Coefficient Computation

	interp (interpolator)
	msresamp (multi-stage arbitrary resampler)
	resamp2 (half-band filter/resampler)
	resamp (arbitrary resampler)
	symsync (symbol synchronizer)

	framing
	interleaver
	Interface

	packetizer (multi-level error-correction)
	bpacket (binary packet generator/synchronizer)
	bpacketgen interface
	bpacketsync interface
	Code example

	frame64, flexframe (basic framing structures)
	frame64 description
	flexframe description
	Framing Structures
	The Decoding Process

	framesyncprops_s (frame synchronizer properties)
	framesyncstats_s (frame synchronizer statistics)
	ofdmflexframe (OFDM framing structures)
	Operational description
	Subcarrier Allocation
	Pilot Subcarriers
	ofdmflexframegen
	ofdmflexframesync
	Performance

	math
	Transcendental Functions
	liquid_gammaf(z), liquid_lngammaf(z)
	liquid_lowergammaf(z,a), liquid_lnlowergammaf(z,a) (lower incomplete Gamma)
	liquid_uppergammaf(z,a), liquid_lnuppergammaf(z,a) (upper incomplete Gamma)
	liquid_factorialf(n)
	liquid_nchoosek()
	liquid_nextpow2()
	liquid_sinc(z)
	liquid_lnbesselif(), liquid_besselif(), liquid_besseli0f()
	liquid_lnbesseljf(), liquid_besselj0f()
	liquid_Qf(), liquid_MarcumQf(), liquid_MarcumQ1f()

	Complex Trigonometry
	liquid_csqrtf()
	liquid_cexpf()
	liquid_clogf()
	liquid_cacosf()
	liquid_casinf()
	liquid_catanf()

	Windowing functions
	hamming(), (Hamming window)
	hann(), (Hann window)
	blackmanharris(), (Blackman-harris window)
	kaiser(), (Kaiser-Bessel window)
	liquid_kbd_window(), (Kaiser-Bessel derived window)

	Polynomials
	polyf_val()
	polyf_fit()
	polyf_fit_lagrange()
	polyf_interp_lagrange()
	polyf_fit_lagrange_barycentric()
	polyf_val_lagrange_barycentric()
	polyf_expandbinomial()
	polyf_expandbinomial_pm()
	polyf_expandroots()
	polyf_expandroots2()
	polyf_findroots()
	polyf_mul()

	Modular Arithmetic
	liquid_is_prime(n)
	liquid_factor(n,*factors,*num_factors)
	liquid_unique_factor(n,*factors,*num_factors)
	liquid_modpow(base,exp,n)
	liquid_primitive_root(n)
	liquid_primitive_root_prime(n)
	liquid_totient(n)

	matrix
	Basic math operations
	matrix_access (access element)
	matrixf_add, matrixf_sub, matrixf_pmul, and matrixf_pdiv (scalar math operations)
	matrixf_trans(), matrixf_hermitian() (transpose matrix)
	matrixf_eye() (identity matrix)

	Elementary math operations
	matrixf_swaprows() (swap rows)
	matrixf_pivot() (pivoting)
	matrixf_mul() (multiplication)
	Transpose multiplication

	Complex math operations
	matrixf_inv (inverse)
	matrixf_div()
	matrixf_linsolve() (solve linear system of equations)
	matrixf_cgsolve() (solve linear system of equations)
	matrixf_det() (determinant)
	matrixf_ludecomp_crout() (LU Decomposition, Crout's Method)
	matrixf_ludecomp_doolittle() (LU Decomposition, Doolittle's Method)
	matrixf_qrdecomp_gramschmidt() (QR Decomposition, Gram-Schmidt algorithm)
	matrixf_chol() (Cholesky Decomposition)
	matrixf_gjelim() (Gauss-Jordan Elimination)

	modem
	Analog modulation schemes
	freqmodem (analog FM)
	ampmodem (analog AM)

	Linear digital modulation schemes
	Interface
	Gray coding
	LIQUID_MODEM_PSK (phase-shift keying)
	LIQUID_MODEM_DPSK (differential phase-shift keying)
	LIQUID_MODEM_APSK (amplitude/phase-shift keying
	LIQUID_MODEM_ASK (amplitude-shift keying)
	LIQUID_MODEM_QAM (quadrature amplitude modulation)
	LIQUID_MODEM_ARB (arbitrary modem)
	Performance
	Soft Demodulation
	Error Vector Magnitude

	Continuous phase digital modulation schemes
	gmskmod, gmskdem (Gauss minimum-shift keying)

	nco (numerically-controlled oscillator)
	nco object
	Description of operation
	Interface

	PLL (phase-locked loop)
	Active lag design
	Active PI design
	PLL Interface

	optim (optimization)
	gradsearch (gradient search)
	Theory
	Momentum constant
	Step size adjustment
	Interface

	gasearch genetic algorithm search
	chromosome, solution representation
	Interface
	Example Code

	random
	Uniform
	Normal (Gaussian)
	Exponential
	Weibull
	Gamma
	Nakagami-m
	Rice-K
	Data scrambler
	interface

	sequence
	bsequence, generic binary sequence
	msequence, m-sequence (linear feedback shift register)
	complementary codes

	utility
	liquid_pack_bytes(), liquid_unpack_bytes(), and liquid_repack_bytes()
	liquid_pack_array(), liquid_unpack_array()
	liquid_lbshift(), liquid_rbshift()
	liquid_lbcircshift(), liquid_rbcircshift()
	liquid_lshift(), liquid_rshift()
	liquid_lcircshift(), liquid_rcircshift()
	miscellany

	experimental
	fbasc (filterbank audio synthesizer codec)
	Interface
	Useful properties

	gport
	Direct Memory Access
	Indirect/Copied Memory Access
	Key differences between memory access modes
	Interface
	Problem areas

	dds (direct digital synthesizer)
	qmfb (quadrature mirror filter bank)
	qnsearch

	IV Installation
	Installation Guide
	Building & Dependencies
	Building from an archive
	Building from the Git repository

	Targets
	Examples (make examples)
	Autotests (make check)
	Macros
	Running the autotests

	Benchmarks (make bench)
	Documentation (make doc)

